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The following extension of Einstein’s General Relativity (GR) is ‘strictly’ 

renormalizable (in 𝐷 = 4):

I

tarity is violated at the tree-level:

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2

[Stelle, PRD (1977)]

Renormalizable Quantum Gravity



The following extension of Einstein’s General Relativity (GR) is ‘strictly’ 

renormalizable (in 𝐷 = 4):

I

tarity is violated at the tree-level:

Usual story: assume Λ ≃ 0, expand  𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 2𝜅ℎ𝜇𝜈 , compute the 

propagator

lict: Unitarity VS Renormalizability!

Reason why such a QFT of gravity is usually claimed to be pathological when 
quantized with conventional methods!

Renormalizable Quantum Gravity

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2

Π 𝑘 = Π𝐺𝑅 +
1

2

𝒫(0)

𝑘2 +𝑚0
2 −

𝒫(2)

𝑘2 +𝑚2
2 , 𝑚0

2 =
𝛾

𝛼
, 𝑚2

2 =
𝛾

𝛽

Spin-2 massive ghost

[Stelle, PRD (1977)]



Outline of the talk

First part (reasons why I would understand the theory better)

1. Motivations for strictly renormalizable quantum gravity:                                 
a different way to tell the story;

2. Brief review of some peculiar features of strictly renormalizable quantum 
gravity.

Second part (some aspects I find very interesting!)

1. Questions: what are the limits of the theory when

2. A non-zero cosmological constant affects the limits, in particular 𝛽 → ∞

3. Different meanings for 𝛽 → ∞ when Λ = 0 or Λ ≠ 0

4. Renormalizability avoids strong coupling in the limit 𝛽 → ∞

5. High-energy limit of the theory and the role of Λ ≠ 0

6. Work in progress...and discussions…

𝛼 → ∞ or 𝛽 → ∞ ?



The GR Lagrangian alone

cannot be used to describe at least two physical observed phenomena:

1. Current accelerated expansion of the Universe (late time physics);

2. CMB anisotropies (early time physics);

Motivations

𝑆𝐺𝑅 =
1

16𝜋𝐺
න𝑑4𝑥 −𝑔 𝑅



The GR Lagrangian alone

cannot be used to describe at least two physical observed phenomena:

1. Current accelerated expansion of the Universe (late time physics);

2. CMB anisotropies (early time physics);

Simplest phenomenological model to explain observations: 

The additional free parameters in 𝑆Λ and 𝑆𝜙 can be fixed by matching with 

observations.

Motivations

𝑆𝐺𝑅 =
1

16𝜋𝐺
න𝑑4𝑥 −𝑔 𝑅

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔𝑅 + 𝑆Λ + 𝑆𝜙 +⋯ ,

𝑆Λ ≡
1

𝜅2
න𝑑4𝑥 −𝑔 Λ,

𝑆𝜙 ≡ scalar field (inflaton) with 
some suitable self-potential



The GR Lagrangian alone

cannot be used to describe at least two physical observed phenomena:

1. Current accelerated expansion of the Universe (late time physics);

2. CMB anisotropies (early time physics);

Simplest phenomenological model to explain observations: 

The additional free parameters in 𝑆Λ and 𝑆𝜙 can be fixed by matching with 

observations.

Question: is there any way to derive those additional terms in the Lagrangian 
from some ‘guiding principles’?

Motivations

𝑆𝐺𝑅 =
1

16𝜋𝐺
න𝑑4𝑥 −𝑔 𝑅

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔𝑅 + 𝑆Λ + 𝑆𝜙 +⋯ ,

𝑆Λ ≡
1

𝜅2
න𝑑4𝑥 −𝑔 Λ,

𝑆𝜙 ≡ scalar field (inflaton) with 
some suitable self-potential



A logical way to proceed:

Framework of QFT and criterion of ‘strict’ renormalizability to select 
fundamental theories: very successful to describe electro-weak and strong 
interactions

Let’s apply it to gravity and check whether it can be useful to describe Nature: 

• If it fails, then do something else;

• BUT, if it doesn’t fail, then try to understand the theory better!

Motivations



A logical way to proceed:

Framework of QFT and criterion of ‘strict’ renormalizability to select 
fundamental theories: very successful to describe electro-weak and strong 
interactions

Let’s apply it to gravity and check whether it can be useful to describe Nature: 

• If it fails, then do something else;

• BUT, if it doesn’t fail, then try to understand the theory you get better!

The criterion of strict renormalizability selects the gravitational action:

Motivations

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2

Cosmological constant: Λ~10−122𝑀𝑝
2 Additional scalar field:  

𝛼

𝜅2
~ 1010

Natural explanation for inflation 
and CMB anisotropies! [Starobinsky, 1980+]



The criterion of strict renormalizability selects the gravitational action:

In my opinion, very important implications follow if we accept these facts:

1. The framework of perturbative QFT and the criterion of strict 
renormalizability (as a tool to select theories) are quite successful also when 
applied to gravity!

2. CMB observations have provided for the first time a test of higher-curvature 
gravity and an ‘indirect’ proof of quantized gravity (the scalar field is a 
gravitational dof)!!

3. Contrary to some beliefs, Starobinsky inflation is not just a model!

Motivations

Cosmological constant: Λ~10−122𝑀𝑝
2 Additional scalar field:  

𝛼

𝜅2
~ 1010

natural explanation for inflation
and CMB anisotropies [Starobinsky, 1980+]

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2



Obvious question: What about the spin-2 massive ghost?

Given the different way I’ve told the story about strictly renormalizable 
quantum gravity,

1. Would you throw the entire theory away just because maybe we 
don’t understand or we don’t know how to deal with the spin-2 
ghost?

2. Or, instead, after appreciating the achievements described before, 
should you feel very motivated to understand the role of the ghost at 
a deeper level?

I opt for the 2nd option!

Motivations



• The loop expansion is controlled by the couplings 𝑔0 ≡
1

𝛼
and 𝑔2 ≡

1

𝛽
.

• Unlike the EFT approach to Einstein’s GR, 𝛼 and 𝛽 can be large: the 
bigger, the better for the perturbative expansion! Reason why 
Starobinsky inflation can be consistently embedded in a renormalizable 
theory but not in the EFT approach to Einstein’s GR.

• If 𝛼 and 𝛽 are positive: 𝑔2 is asymptotically free (i.e. 𝛽 → ∞), whereas 𝑔0
grows logarithmically with the energy (i.e. 𝛼 → 0).

• The tree-level graviton-graviton scattering is the same as Einstein’s GR, i.e. 

the cross section still grows as ~
𝐸2

𝑀𝑝
2 .

• The last point might be related to the presence of semi-classical (black-
hole) states in the spectrum.  

Some interesting features of the theory

[Julve, Tonin (1978); Fradkin, Tseytlin (1982); Avramidi, Barvinsky(1985+); Salvio, Strumia (2014+); Piva (2021)]

[But see Holdom (2021) for a different perspective]

[Donà et al. (2015); Holdom (2021)]



S-matrix unitarity and optical theorem: 

Interesting approaches

• Quantize the ghost with negative norms (𝑐𝑛 < 0 for ghost states but 
positive energies)

• Loop corrections make the ghost decay after times of order 𝜏~𝑀𝑝
2/𝑚2

3:

treat the ghost as an unstable particle, unitarity restored for 𝑡 > 𝜏

• Replace the Feynman 𝑖𝜖 with the Fakeon prescription and convert the 
ghost into a purely virtual particle (LHS=0 for ghost cuts and 𝑐𝑛 = 0 for 
ghost states)  

Recent proposals to recover unitarity with ghost 

𝑆+𝑆 = 1, 𝑆 = 1 + 𝑖𝑇,

1 =෍

𝑛

𝑐𝑛 ۧȁ𝑛 ۦ ȁ𝑛
⟹ 2𝐼𝑚 𝑎 𝑇 𝑎 =෍

𝑛

𝑐𝑛 𝑛 𝑇 𝑎 2

[Salvio, Strumia (2014+); Holdom (2021+); etc]

[Donoghue, Menezes (2018+)]

[Anselmi & Piva 2017+]



Outline of the talk

First part (reasons why I would understand the theory better)

1. Motivations for strictly renormalizable quantum gravity:                                 
a different way to tell the story;

2. Brief review of some peculiar features of strictly renormalizable quantum 
gravity.

Second part (some aspects I find very interesting!)

1. Questions: what are the limits of the theory when

2. A non-zero cosmological constant affects the limits, in particular 𝛽 → ∞

3. Different meanings for 𝛽 → ∞ when Λ = 0 or Λ ≠ 0

4. Renormalizability avoids strong coupling in the limit 𝛽 → ∞

5. High-energy limit of the theory and the role of Λ ≠ 0

6. Work in progress...and discussions…

𝛼 → ∞ or 𝛽 → ∞ ?



Questions:

To answer these questions, it is convenient to rewrite the action in an 
equivalent form where all the degrees of freedom, their masses and 
couplings are explicit.

Aim of this talk

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2

𝛼 → ∞ ⟹ 𝑆 → ?

𝛽 → ∞ ⟹ 𝑆 → ?



1. Auxiliary scalar field 𝜒

2. Conformal transformation:   𝑔𝜇𝜈 →
1

1+𝛼𝜒/3ഥ𝛾
𝑔𝜇𝜈

3. Canonical normalization:  𝜙 =
3ഥ𝛾

2𝜅2
𝛼

3ഥ𝛾
𝜒

Additional spin-0 field

𝑆 𝑔, 𝜒 =
ҧ𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ + 𝑆𝑊 𝑔 +

𝛼

12𝜅2
න𝑑4𝑥 −𝑔 2𝑅 − 8Λ − 𝜒 𝜒

𝑆 𝑔, 𝜙 =
ҧ𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ + 𝑆𝑊 𝑔 + 𝑆0 𝑔, 𝜙 ,

𝑆0 𝑔, 𝜙 = න𝑑4𝑥 −𝑔
1

1 + 2𝜅2/3 ҧ𝛾𝜙
2 −

1

2
∇𝜇𝜙∇𝜇𝜙 −

𝑚0
2

2
𝜙2

ҧ𝛾 ≡ 𝛾 +
4

3
𝛼Λ 𝑚0

2 ≡
𝛾

𝛼

Rescaled Planck Mass when Λ ≠ 0 Mass of the scalar field



We can expand around 𝜙 = 0:

Derivative interaction couplings ~
𝜅2

ഥ𝛾

𝑛−2

2
=

1

𝑀𝑝

𝑛−2
1

1+4𝛼Λ/3𝛾

𝑛−2

2

Non-derivative interaction couplings ~ 𝑚0
2 𝜅2

ഥ𝛾

𝑛−2

2
=

𝛾

𝛼

1

𝑀𝑝

𝑛−2
1

1+4𝛼Λ/3𝛾

𝑛−2

2

Additional spin-0 field: couplings

𝑆 𝑔, 𝜙 =
ҧ𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ + 𝑆𝑊 𝑔 + 𝑆0 𝑔, 𝜙 ,

𝑆0 𝑔, 𝜙

= න𝑑4𝑥 −𝑔 1 − 2
2𝜅2

3 ҧ𝛾
𝜙 +⋯+ 𝑛 − 1 −1 𝑛−2

2𝜅2

3 ҧ𝛾

𝑛−2
2

𝜙𝑛−2 +⋯

× −
1

2
∇𝜇𝜙∇𝜇𝜙 −

𝑚0
2

2
𝜙2

Interaction couplings depend on Λ !



1. Auxiliary spin-2 field 𝜑𝜇𝜈

2. Metric transformation:   𝑔𝜇𝜈 → 𝑔𝜇𝜈 − 𝛽
ഥ𝛾

෥𝛾
𝜑𝜇𝜈

3. Canonical normalization:  𝑓𝜇𝜈 = 𝛽
ഥ𝛾

4𝜅2
ഥ𝛾

෥𝛾
𝜑𝜇𝜈

Additional spin-2 field

𝑆 𝑔, 𝜙, 𝜑 =
෤𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ + 𝑆0 𝑔, 𝜙

−
𝛽

2𝜅2
න𝑑4𝑥 −𝑔 ҧ𝛾 𝐺𝜇𝜈 + Λ𝑔𝜇𝜈 𝜑𝜇𝜈 −

ҧ𝛾2

4
(𝜑𝜇𝜈𝜑

𝜇𝜈 − 𝜑2)

𝑆 𝑔, 𝜙, 𝑓 =
෤𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ + 𝑆0 𝑔 − 2𝜅2/෤𝛾𝑓, 𝜙 + 𝑆2 𝑔, 𝑓 ,

෤𝛾 ≡ ҧ𝛾 +
2

3
𝛽Λ = 𝛾 +

2

3
(2𝛼 + 𝛽)Λ

Additional rescaling of 
Planck Mass when Λ ≠ 0

[Kaku et al. (1977); Hindawi et al. (1996); Anselmi & Piva (2018)]



Action for the massive spin-2 around 𝑓𝜇𝜈 = 0:

𝑆𝑃𝐹 𝑔, 𝑓 is the Fierz-Pauli action for the field 𝑓𝜇𝜈 in the metric 𝑔𝜇𝜈 , with mass

Additional spin-2 field

𝑆2 𝑔, 𝑓 = − 𝑆𝑃𝐹 𝑔, 𝑓 − න𝑑4𝑥 −𝑔 2𝑓𝜇
𝜌
𝑓𝜌𝜈 − 𝑓𝑓𝜇𝜈 𝑅𝜇𝜈 −

𝑅

2
𝑓𝜇𝜈𝑓

𝜇𝜈 −
1

2
𝑓2

−
1

2

𝜅2

෤𝛾
𝑚2
2න𝑑4𝑥 −𝑔 5𝑓𝜇𝜈𝑓

𝜇𝜈𝑓 − 4𝑓𝜇𝜈𝑓𝜇
𝜌
𝑓𝜌𝜈 − 𝑓3

+
8

3

𝜅2

𝛾

𝜅2

෤𝛾
න𝑑4𝑥𝑑4𝑦𝑑4𝑧 −𝑔

𝛿 3 𝑆𝐸𝐻
𝛿𝑔𝜇𝜈 𝑥 𝛿𝑔𝜌𝜎 𝑦 𝛿𝑔𝛼𝛽 𝑧

𝑓𝜇𝜈(𝑥)𝑓𝜌𝜎(𝑦)𝑓𝛼𝛽(𝑧)

+ 𝑂(𝑓4)

𝑚2
2 =

𝛾

𝛽
+
2

3
2
𝛼

𝛽
+ 1 Λ

The mass of the spin-2 ghost depends on Λ !

𝑚2
2 ≥

2

3
Λ

(If Λ ≥ 0, 𝑚2
2 ≥ 0, 𝛽 > 0)



• n-point interaction couplings generated by variations of  𝑆𝐸𝐻

~
𝜅2

෥𝛾

𝑛−2

2
=

1

𝑀𝑝

𝑛−2
1

1+2Λ(2𝛼+𝛽)/3𝛾

𝑛−2

2

• n-point interaction couplings generated by the mass term 

~ 𝑚2
2 𝜅2

෥𝛾

𝑛−2

2
=

𝛾

𝛽

1

𝑀𝑝

𝑛−2
1

1+2Λ(2𝛼+𝛽)/3𝛾

𝑛−2

2

Interaction couplings depend on Λ ⟹ additional dependences on 𝛽 !

Additional spin-2 field: couplings



When Λ ≠ 0 the couplings of the massless spin-2 also change:

෤𝛾

2𝜅2
න𝑑4𝑥 −𝑔 𝑅 − 2Λ → 𝑔𝜇𝜈 = ҧ𝑔𝜇𝜈 +

2𝜅

෤𝛾
ℎ𝜇𝜈 , ෤𝛾 = 𝛾 +

2

3
2𝛼 + 𝛽 Λ

Self-interaction couplings 

~
𝜅2

෥𝛾

𝑛−2

2
=

1

𝑀𝑝

𝑛−2
1

1+2Λ(2𝛼+𝛽)/3𝛾

𝑛−2

2

When Λ ≠ 0 ⟹ additional dependences on Λ, 𝛼, 𝛽 !

Couplings for the massless spin-2 



Limit  𝜶 → ∞ with 𝚲 = 𝟎

For the time being, let us consider the spin-0 action around ҧ𝑔𝜇𝜈

When Λ = 0, the limit 𝛼 → ∞ (other parameters and fields kept fixed) gives

• Derivative couplings  ~
𝜅2

𝛾

𝑛−2

2
=

1

𝑀𝑝

𝑛−2

→ finite

• Non-derivative couplings ~ 𝑚0
2 𝜅2

𝛾

𝑛−2

2
=

𝛾

𝛼

1

𝑀𝑝

𝑛−2

→ 0

𝛼 → ∞ is a massless limit & the scalar field is still self-interacting (when Λ = 0)!

𝑆0[ ҧ𝑔,𝜙] = න𝑑4𝑥 − ҧ𝑔 1 − 2
2𝜅2

3 ҧ𝛾
𝜙 +⋯+ 𝑛 − 1 −1 𝑛−2

2𝜅2

3 ҧ𝛾

𝑛−2
2

𝜙𝑛−2 +⋯

× −
1

2
∇𝜇𝜙∇𝜇𝜙 −

𝑚0
2

2
𝜙2

𝑆0[ ҧ𝑔,𝜙] = න𝑑4𝑥 − ҧ𝑔 1 − 2
2𝜅2

3 ҧ𝛾
𝜙 + ⋯+ 𝑛 − 1 −1 𝑛−2

2𝜅2

3 ҧ𝛾

𝑛−2
2

𝜙𝑛−2 +⋯ −
1

2
∇𝜇𝜙∇𝜇𝜙⟹



Limit  𝜶 → ∞ with 𝚲 ≠ 𝟎

For the time being, let us consider the spin-0 action around ҧ𝑔𝜇𝜈

When Λ ≠ 0, the limit 𝛼 → ∞ (other parameters and fields kept fixed) gives

• Derivative couplings ~
𝜅2

ഥ𝛾

𝑛−2

2
=

1

𝑀𝑝

𝑛−2
1

1+4𝛼Λ/3𝛾

𝑛−2

2
→ 0

• Non-derivative couplings ~ 𝑚0
2 𝜅2

ഥ𝛾

𝑛−2

2
=

𝛾

𝛼

1

𝑀𝑝

𝑛−2
1

1+4𝛼Λ/3𝛾

𝑛−2

2
→ 0

𝛼 → ∞ is still a massless limit but now the scalar field becomes free (as Λ = 0)!

𝑆0[ ҧ𝑔,𝜙] = න𝑑4𝑥 − ҧ𝑔 1 − 2
2𝜅2

3 ҧ𝛾
𝜙 +⋯+ 𝑛 − 1 −1 𝑛−2

2𝜅2

3 ҧ𝛾

𝑛−2
2

𝜙𝑛−2 +⋯

× −
1

2
∇𝜇𝜙∇𝜇𝜙 −

𝑚0
2

2
𝜙2

𝑆0[ ҧ𝑔,𝜙] = න𝑑4𝑥 − ҧ𝑔 −
1

2
∇𝜇𝜙∇𝜇𝜙⟹



Limit  𝜶 → ∞: recap

We noticed that

• A non-zero cosmological constant can affect the interaction couplings;

• When Λ = 0, the limit 𝛼 → ∞ gives a massless self-interacting spin-0

• When Λ ≠ 0 additional dependences on 1/𝛼 appear

• Thus, when Λ ≠ 0 the limit 𝛼 → ∞ kills all the spin-0 interactions

Next, we want to consider the more interesting limit  𝛽 → ∞ in both cases 
Λ = 0 and Λ ≠ 0

𝑆 =
1

2𝜅2
න𝑑4𝑥 −𝑔 𝛾 𝑅 − 2Λ +

𝛼

6
𝑅2 −

𝛽

2
𝐶𝜇𝜈𝜌𝜎𝐶

𝜇𝜈𝜌𝜎 , 𝑀𝑝
2 =

𝛾

𝜅2



Limit  𝜷 → ∞ with 𝚲 = 𝟎

Action for the massive spin-2 around 𝑓𝜇𝜈 = 0 and ҧ𝑔𝜇𝜈:

When Λ = 0, the limit 𝛽 → ∞ gives

• 𝑆𝐸𝐻-term couplings ~
𝜅2

γ

𝑛−2

2
=

1

𝑀𝑝

𝑛−2

→ finite

• Mass-term couplings ~ 𝑚2
2 𝜅2

𝛾

𝑛−2

2
=

𝛾

𝛽

1

𝑀𝑝

𝑛−2

→ 0

• It is a massless limit:

Typically, the massless limit in theories of Massive Gravity can lead to strong 
coupling even below 𝑀𝑝.

What happens in renormalizable quantum gravity?

𝑆2 ത𝑔, 𝑓 = − 𝑆𝑃𝐹 ത𝑔, 𝑓 − න𝑑4𝑥 − ത𝑔 2𝑓𝜇
𝜌
𝑓𝜌𝜈 − 𝑓𝑓𝜇𝜈 ത𝑅𝜇𝜈 −

ത𝑅

2
𝑓𝜇𝜈𝑓

𝜇𝜈 −
1

2
𝑓2

+ 𝑂 𝑓3 ,

𝑚2
2 =

𝛾

𝛽
→ 0

[See reviews by Hinterbichler (2011) and de Rham (2014)]



Brief digression on Massive Gravity with 𝚲 = 𝟎

Massive Gravity:

Naively, the limit  𝑚2
2 → 0 seems to give a massless spin-2 with 2 dofs… 

The number of degrees of freedom must be preserved: Stückelberg trick

Massless limit (2+2+1 = 5 dofs):

Possible strong coupling from helicity-0 interactions:     𝑂 𝑓3 ~
1

𝑚2
𝑂 𝜑3 → ∞

𝑆𝑀𝐺 = න𝑑4𝑥 −𝑔 −
1

2
∇𝜌𝑓𝜇𝜈∇

𝜌𝑓𝜇𝜈 + ∇𝜌𝑓𝜇𝜈∇
𝜇𝑓𝜌𝜈 − ∇𝜇𝑓∇𝜈𝑓

𝜇𝜈 +
1

2
∇𝜌𝑓∇

𝜌𝑓 −
𝑚2
2

2
𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑓2

+ 𝑂 𝑓3

[See reviews by Hinterbichler (2011) and de Rham (2014)]

𝑓𝜇𝜈 = 𝑓′𝜇𝜈 +
1

𝑚2
∇𝜇𝐴𝜈 + ∇𝜈𝐴𝜇 +

2

𝑚2
2 ∇𝜇∇𝜈𝜑,

Gauge symmetries:

𝛿𝐴𝜇 = −𝑚2𝜉𝜇 + ∇𝜇𝜉,

𝛿𝜑 = −𝑚2 𝜉,

𝛿𝑓′𝜇𝜈 = ∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇 ,

𝑆𝑀𝐺 𝑓′, 𝐴, 𝜑 = 𝑆𝐹𝑃
𝑚2=0 𝑓′ +න𝑑4𝑥 −𝑔 −

1

2
𝐹𝜇𝜈𝐹𝜇𝜈 − 3∇𝜌𝜑∇

𝜌𝜑 + 𝑂(𝑓3)



Does a strong coupling (below 𝑀𝑝) arise in the strictly renormalizable quantum 

gravity? 

A strong coupling in the limit 𝑚2
2 → 0 (i.e., 𝛽 → ∞) can be avoided only in 𝐷 = 4!

Stückelberg decomposition for Λ = 0 and in 𝐷 dimensions:

Possible strong coupling from  𝑅𝜇𝜈𝐴′𝜇𝐴′𝜈 ~
1

𝑚2
2 𝑅

𝜇𝜈∇𝜇𝜑∇𝜈𝜑 ?

[first asked by Hinterbichler & Saravani (2016)]

Limit  𝜷 → ∞ with 𝚲 = 𝟎: massless limit

𝑆2
′ 𝑔, 𝑓 =

𝛾

2𝜅2
න𝑑𝐷𝑥 −𝑔𝑅 +න𝑑𝐷𝑥 −𝑔 −

𝛾

𝜅2
𝐺𝜇𝜈𝑓

𝜇𝜈 +
𝑚2
2

2
(𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑓2)

=
𝛾

2𝜅2
න𝑑𝐷𝑥 −𝑔𝑅 + න𝑑𝐷𝑥 −𝑔 ቈ−

𝛾

𝜅2
𝐺𝜇𝜈𝑓′

𝜇𝜈 +
𝑚2
2

2
(𝑓′𝜇𝜈𝑓′

𝜇𝜈 − 𝑓′2)

𝑓𝜇𝜈 = 𝑓′𝜇𝜈 +
1

𝑚2
∇𝜇𝐴′𝜈 + ∇𝜈𝐴′𝜇 , 𝐴′𝜇 = 𝐴𝜇 +

1

𝑚2
∇𝜇𝜑

⟹

቉+
1

2
𝐹𝜇𝜈𝐹𝜇𝜈 + 2𝑚2𝑓′

𝜇𝜈 ∇𝜇𝐴′𝜈 − 𝑔𝜇𝜈 ∇
𝜌𝐴′𝜌 − 2𝑅𝜇𝜈𝐴′𝜇𝐴′𝜈 ,

𝛾

𝜅2
= 𝑀𝑝

𝐷−2



Make a field redefinition:

In the massless limit 𝑚2
2 → 0 (𝛽 → ∞, Λ = 0) we get

4 conditions to avoid strong coupling in the massless limit: 

Limit  𝜷 → ∞ with 𝚲 = 𝟎: massless limit

𝑓′𝜇𝜈 → 𝑓′𝜇𝜈 + 𝑎 𝐴′𝜇𝐴′𝜈 + 𝑏 𝑔𝜇𝜈 𝐴′𝜌𝐴′
𝜌

𝑆2
′ 𝑔, 𝑓′, 𝐴′ =

𝛾

2𝜅2
න𝑑𝐷𝑥 −𝑔𝑅 + න𝑑𝐷𝑥 −𝑔 ൥−

𝛾

𝜅2
𝐺𝜇𝜈𝑓′

𝜇𝜈 +
𝑚2
2

2
(𝑓′𝜇𝜈𝑓′

𝜇𝜈 − 𝑓′2) +
1

2
𝐹𝜇𝜈𝐹𝜇𝜈⟹

+2𝑚2𝑓′
𝜇𝜈 ∇𝜇𝐴′𝜈 − 𝑔𝜇𝜈 ∇

𝜌𝐴′𝜌 + 𝑎 𝑓′𝜇𝜈𝐴′𝜇𝐴
′
𝜈 + [𝑏 1 − 𝐷 − 2𝑎]𝑓′𝐴′𝜌𝐴′

𝜌

𝑎
𝛾

𝜅2
+ 2𝑚2

2 = 0,

቉−𝑚2 2𝑏 1 − 𝐷 − 3𝑎 𝐴′𝜇𝐴
′
𝜈∇

𝜇𝐴′𝜈 −
𝑚2
2

2
𝑏2𝐷 1 − 𝐷 + 2𝑎𝑏(1 − 𝐷) 𝐴′𝜌𝐴′

𝜌 2

−
1

𝑚2
2 𝑎

𝛾

𝜅2
+ 2𝑚2

2 𝑅𝜇𝜈𝐴′𝜇𝐴
′
𝜈 −

𝛾

𝜅2
1 −

𝐷

2
𝑏 −

𝑎

2
𝑅𝐴′𝜌𝐴′

𝜌

1 −
𝐷

2
𝑏 −

𝑎

2
= 0,

2𝑏 1 − 𝐷 − 3𝑎 = 0,

𝑏2𝐷 1 − 𝐷 + 2𝑎𝑏(1 − 𝐷) = 0

can be simultaneously satisfied 
only in 𝐷 = 4 !!!

𝑎 = −
𝜅2

𝛾
2𝑚2

2 = −2𝑏,



Then, by canonically normalizing the fields, making the additional transformations  

𝑓′𝜇𝜈 → 𝑓′𝜇𝜈 −
𝛾

4𝜅2
𝑔𝜇𝜈, 𝑔𝜇𝜈 → 𝑒− 2𝜅2/3𝛾𝜑𝑔𝜇𝜈,

we get the following action as a result of the limit 𝛽 → ∞ with Λ = 0:

• The massive spin-2 contains 5 massless ghost-like dofs (±2, ±1, 0)

• The self-interactions of 𝑓′𝜇𝜈 and ℎ𝜇𝜈 do not vanish;

• Self-interactions of 𝐴𝜇 vanish; those of 𝜑 can be obsorbed into a field redefinition

• Various mutual interactions survive among all fields survive

Main point: the limit 𝛽 → ∞ with Λ = 0 does not give rise to divergent couplings and 
most of the interactions survive

Limit  𝜷 → ∞ with 𝚲 = 𝟎: massless limit

+න𝑑4𝑥 −𝑔
1

4
𝐹𝜇𝜈𝐹𝜇𝜈 +

1

2
𝑒− 2𝜅2/3𝛾𝜑∇𝜇𝜑∇

𝜇𝜑

𝑆 𝑔, 𝜙, 𝑓′, 𝐴, 𝜑 = 𝑆𝐸𝐻[𝑔] + 𝑆0 (𝑔 − 2𝑘2/𝛾𝑓′)𝑒− 2𝜅2/3𝛾𝜑, 𝜙 + 𝑆2
(𝑚2=0) 𝑔, 𝑓′



Limit  𝜷 → ∞ with 𝚲 ≠ 𝟎

Action for the massive spin-2 around 𝑓𝜇𝜈 = 0 and ҧ𝑔𝜇𝜈 (de Sitter):

When Λ ≠ 0, the limit 𝛽 → ∞ gives

• 𝑆𝐸𝐻-term couplings ~
𝜅2

γ

𝑛−2

2
=

1

𝑀𝑝

𝑛−2
1

1+2Λ(2𝛼+𝛽)/3𝛾

𝑛−2

2
→ 0

• Mass-term couplings ~ 𝑚2
2 𝜅2

𝛾

𝑛−2

2
=

𝛾

𝛽

1

𝑀𝑝

𝑛−2
1

1+2Λ(2𝛼+𝛽)/3𝛾

𝑛−2

2
→ 0

• NOT a massless limit:

Be careful: in theories of Massive Gravity this limit for the mass is known as 
partially massless limit and in general may lead to strong coupling.      

𝑆2 ത𝑔, 𝑓 = − 𝑆𝑃𝐹 ത𝑔, 𝑓 − න𝑑4𝑥 − ത𝑔 2𝑓𝜇
𝜌
𝑓𝜌𝜈 − 𝑓𝑓𝜇𝜈 ത𝑅𝜇𝜈 −

ത𝑅

2
𝑓𝜇𝜈𝑓

𝜇𝜈 −
1

2
𝑓2

+ 𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠,

𝑚2
2 =

𝛾

𝛽
+
2

3
2
𝛼

𝛽
+ 1 Λ →

2

3
Λ



Brief digression on Massive Gravity with 𝚲 > 𝟎

Massive Gravity around de Sitter:

Naively, the limit 𝑚2
2 →

2

3
Λ seems to give a partially massless spin-2 with 4 dofs…

The quadratic part of the action becomes:

Scalar gauge symmetry kills 1 dof: (5-1=4 dofs)

This is known as partially massless gravity where the graviton propagates 4 dofs

𝑆𝑀𝐺 = න𝑑4𝑥 −𝑔 ቈ−
1

2
∇𝜌𝑓𝜇𝜈∇

𝜌𝑓𝜇𝜈 + ∇𝜌𝑓𝜇𝜈∇
𝜇𝑓𝜌𝜈 − ∇𝜇𝑓∇𝜈𝑓

𝜇𝜈 +
1

2
∇𝜌𝑓∇

𝜌𝑓

൨+Λ 𝑓𝜇𝜈𝑓
𝜇𝜈 −

1

2
𝑓2 −

𝑚2
2

2
𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑓2 + 𝑂 𝑓3

[Deser, Nepomechie (1984); Deser, Waldron (2001+); etc]

𝛿𝑓𝜇𝜈(𝑥) = ∇𝜇∇𝜈𝜁(𝑥) +
Λ

3
𝑔𝜇𝜈𝜁(𝑥),

𝑆𝐹𝑃 = න𝑑4𝑥 −𝑔 ቈ−
1

2
∇𝜌𝑓𝜇𝜈∇

𝜌𝑓𝜇𝜈 + ∇𝜌𝑓𝜇𝜈∇
𝜇𝑓𝜌𝜈 − ∇𝜇𝑓∇𝜈𝑓

𝜇𝜈 +
1

2
∇𝜌𝑓∇

𝜌𝑓

ቃ+Λ 𝑓𝜇𝜈𝑓
𝜇𝜈 −

1

2
𝑓2 −

Λ

3
𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑓2



Brief digression on Massive Gravity with 𝚲 > 𝟎

Massive Gravity around de Sitter:

Naively, the limit 𝑚2
2 →

2

3
Λ seems to give a partially massless spin-2 with 4 dofs… 

The number of degrees of freedom must be preserved: Stückelberg trick

Partially massless limit Δ → 0 after substitution (4+1=5 dofs):

Possible strong coupling from 𝜑 interactions:     𝑂 𝑓3 ~
1

Δ
𝑂 𝜑3 → ∞

𝑆𝑀𝐺 = න𝑑4𝑥 −𝑔 ቈ−
1

2
∇𝜌𝑓𝜇𝜈∇

𝜌𝑓𝜇𝜈 + ∇𝜌𝑓𝜇𝜈∇
𝜇𝑓𝜌𝜈 − ∇𝜇𝑓∇𝜈𝑓

𝜇𝜈 +
1

2
∇𝜌𝑓∇

𝜌𝑓

൨+Λ 𝑓𝜇𝜈𝑓
𝜇𝜈 −

1

2
𝑓2 −

𝑚2
2

2
𝑓𝜇𝜈𝑓

𝜇𝜈 − 𝑓2 + 𝑂 𝑓3

[de Rham, Hinterbichler, Johnson (2018)]

𝑓𝜇𝜈 = 𝑓′𝜇𝜈 +
3

Λ

1

Δ
∇𝜇∇𝜈𝜑 + 𝑔𝜇𝜈

Λ

3
𝜑

Gauge symmetries:

𝛿𝜑 = −
Λ

3
Δ 𝜁,

𝛿𝑓′𝜇𝜈 = ∇𝜇∇𝜈𝜁 +
Λ

3
𝑔𝜇𝜈𝜁,

𝑆𝑀𝐺 𝑓′, 𝜑 = 𝑆𝐹𝑃
Δ=0 𝑓′ + 3න𝑑4𝑥 −𝑔 −

1

2
∇𝜌𝜑∇

𝜌𝜑 −
𝑚𝜑
2

2
𝜑2 + 𝑂 𝑓3 , 𝑚𝜑

2 ≡ −
4

3
Λ

Δ ≡ 𝑚2
2 −

2

3
Λ



Limit  𝜷 → ∞ with 𝚲 ≠ 𝟎 ⇔ partially massless limit

What happens in the strictly renormalizable theory? 

(Is the strong coupling avoided as in the massless limit case with Λ = 0?)

Work in progress…

Claims:

• the renormalizability of the theory in 𝐷 = 4 should guarantee a smooth 
𝛽 → ∞ limit also when Λ ≠ 0

• Then, the additional dependence on 𝛽 in the couplings due to Λ ≠ 0,
drastically changes the 𝛽 → ∞ limit of the theory: all ghost interactions 
might be killed (ghost decoupling)!

…stay tuned…



Possible implications?

• If 𝛼, 𝛽 are positive, then in the high-energy limit we expect
𝛼 → 0, 𝛽 → ∞

• Question: can our discussion on 𝛽 → ∞ be useful to understand the 
high-energy behavior of the spin-2 ghost?

• If YES, then the presence of a cosmological constant Λ might affect the 
high-energy behavior of the theory non-trivially (ghost decoupling at 
high energies ?)

• Most of the current approaches to the ghost problem are based on a 
QFT formulation in Minkowski background and ‘extrapolations’ to 
curved backgrounds. 

Does a non-zero Λ affect non-trivially some of those approaches?

Hopefully some material for discussions…



Thank you

for

your attention!


