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Goal: Preparing for a lattice effort in HD theories
Logarithmic running couplings differ from literature
Insights for Quadratic Gravity and Asymptotic Safety
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The non-linear sigma model as a gravity analog:

Gravity Sigma model
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Both form effective field theory at low energy

Both have higher derivative extension
- Quadratic gravity vs HDNLSM (Hasenfratz)

Both have been treated in Asymptotic Safety
- including HDNLSM (Percacci and Zanusso)

But — NLSM is much easier to probe on lattice
- HDNLSM studies the higher derivative aspects of the theory



Outline:

1) The higher derivative linear sigma model
- renormalization without running
- running without renormalization
- EFT logic
- lattice results

2) Higher derivative U(1) NLSM
- EFT logic
- non-trivial amplitude calculation
- lessons on running
- new phenomenon: operator “melting”

3) The higher derivative SU(N) NLSM
- all results in literature are changed

4) Comments on UV strong interactions



A Curiosity:

Tadpole diagram with quartic propagators

With UV cutoff ( A) or IR cutoff ( £ ): Q
1 A?
Ligag = —i/d‘lpﬁ ~ log 5} : /

With dimensional regularization:

1
Itad = —Z‘/ddpﬁ =0

This 1s well-known phenomenon and does not lead to any
differences in physical reactions

The log A? /k? dependence disappears in renormalization process



But this leads us astray on running couplings

d d .
Calculated by A — or k - (in FRG)

Vanishing of dim. reg. integral shows that this 1s wrong
Moreover, tadpole integrals also appear in PV reduction of bubbles

What is going wrong?

Tadpole does not involve any external momentum
- no kinematic dependence
- disappears 1n renormalization process
- measure coupling at any scale, 1t 1s the same at another scale

Need to differentiate log A%, log k?, or log u?* from log E*



1) The Higher Derivative Linear Sigma Model
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Goals here:
A) not all renormalization is running

: J . :
- using U o 1s not appropriate here

B) not all running is renormalization
- temporary running, but u, A, k independent

C) EFT interpretation

D) lattice simulation (Jansen, Kuti, Liu)
- theory appears non-perturbatively stable

JFD +
G Menezes



The Higher Derivative Linear Sigma Model

1 1 p A >
L= 20" 00— 5 06 0p+ 266~ 5(6-9)

This is renormalizable:

Only divergence 1s in mass term
- was quadratic, now logarithmic

Comes from tadpole diagram
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— 9 - = Partial fractions
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- no dependence on external momenta
> 3xm? [1
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A) Renormalization without running_
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Despite u % Sus = 0,

this 1s not a running parameter in physical reactions
- no dependence on external momenta
- measure the same value at any scale

Issue here:
Intrinsic scale m
No sense of mass independent renormalization

-logm?/u® vs logq?/u?



Slight
B) “Running without renormalization” - A~ misnomer

Radiative corrections to A are finite (and independent of u, A, k)
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with bubble diagram integral Ei Ey

(© (d)

I. 1 ' zmi+ (1—z)mi —q¢’z(1 —x

12(q,m1,m2)=[g—/ dx log( 1 ( )H22 q ( ))]
0

This runs as normal at energies below m (even though u aa_u = 0)

-measure A at some renormalization point up
N, A
Mg) = Mur) + 555 log(q”/ 1)

But stops running at high energy /

A(q) — A(oo) = constant o o

Novel form of Asymptotic Safety



C) EFT understanding

Below m can integrate out heavy ghost
- only residual 1s light Goldstone field
- EFT theory is normal ¢ *theory
- normal running

Above m we see full theory
- full theory has cancelling factor of log g



D) Lattice simulation
Jansen, Kuti, Liu ~ 1992-94

use third order HD operator — makes theory finite
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Similar running behavior:
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Figure 3. The running coupling constant
is plotted from the numerical integration of
the one-loop renormalization group equations
with input parameters as defined earlier.
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Figure 2. The one-loop B-function is plotted
against the logarithmic scale t = Inu?/v? from
the numerical integration of the renormaliza-
tion group equations. The point t = O corre-
sponds to uy = v and t = O on the logarith-
mic scale. The initial condition A(0) = 10/24 is
chosen with M /v = 14.3 which puts the ghost
location into the multi-TeV range.



Various results:

- main take-away 1s non-perturbative stability
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Figure 1. The phase diagram of the lattice model
at infinite bare coupling. The dotted line is cal-
culated in the large-N expansion. The solid line
displays the fixed Mg /my ratio towards the con-
tinuum limit of the higher derivative theory.
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Figure 2. The circles are from our simulation re-
sults. They are compared with the simple O(4)
model on a hypercubic lattice (2] (squares), with
Symanzik improved action on a hypercubic lat-
tice [5] (star), and with dimension six interaction
terms added on Fy lattices [6] (triangle).



Exploring physics of a heavy Higgs
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Figure 3.9: The complex poles of the large N Higgs propagator is shown on the
first and the second Riemann sheets. The bare coupling constant is set to infinity
in this figure. The open hexagonal points represent the ghost pair poles on the first
Riemann sheet. The filled hexagonal points are the 'image’ of the ghost on the second
Riemann sheet. The filled circles are the Higgs poles on the second sheet. The size
of the points reflects the different v values.
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Figure 3.11: The large N result for the width of the Higgs particle as a function
of the Higgs mass is shown in the Pauli-Villars higher derivative O(N) theory. The
open squares are the naive large N prediction at NV = 4. The open hexagons are the
large N results after the number of decay channels has been corrected. The solid line
is the leading order perturbation result and the dashed line is the perturbation result
up to the second order. The corrected large N width agrees with the perturbative
prediction very well in the weakly interacting regime as it should. The naive large
N result overshoots by about 30 to 40 percent.



Buccio, JFD, Percacci

Tsevtlin
2) The HD U(1) NLSM Holdorn

- interactions contain derivatives also
- a step closer to quadratic gravity behavior

A A Z3g
E__ M¢au¢__ ¢ ¢—4M4

(0.90"¢)(0, 0" $)
- m and M of similar size 1n "realistic” setting

- but we can entertain different sizes

- keep M fixed — let g potentially run

Renormalizable HD theory, with HD interactions

We have explored full explicit calculations of amplitudes



A) EFT treatment of normal U(1) NLSM

L= —8 PO P — W( 0,$0"9)(0,90" ¢) + Ls + Ls

At one loop,

No wavefunction renormalization ( Z; = 1)
Original coupling g 1s not renormalized (nor any correction)

New operators at order E® needed

Lo = 12850,00°000,00"6 + 950,60,600" 60" ¢
Ly = 4]g\;saﬂ¢aﬂ¢m2a,,¢a"¢— 4ﬁsau¢ay¢u2a#¢a"¢

- gg runs (because of log E?)



The coupling ¢ does not run:
- nor do ggcouplings
- loops are at order E®

The low energy matrix element:
9 2 2 2
M = 2M4(S +t° +u”)
ge (
2 M

96
4M6
M8 oOMSE

2

9 4 —
41s%1 41t log(—-
+ 192072 M8 i Og(,uR)_i_ og(qu

+ s+ 7 +u®) +

st 4 yd) 4 BER)

+ (t2—|—u ) log( 2)—{—t2(s +u )log( 5
Hr MR

with — 0 41g°
Py Poe = I50r2
Bgs = 0 g2

(8%t + s*u + t*u + t%s + u’s + u’t)
(s*t? + s*u® + t*u?)
) + 41u* log(—- —

)—|—u (t? + s%)1

og(=)

Nz

Bz, =0



B) FRG treatment of the Higher Derivative model

- both full AS technology and also at one loop Buccio
- Gaussian fixed points in the IR and UV Percacci

z, ¢

Figure 1: The flow in the chart U; (left) and in the chart U, (right). The black dot (on the left) and the
dahed black line (on the right) mark GFPy, the red dot marks GFPs, the blue square marks NGFP;. The
separatrix is the green flow line. The continuous red lines are singularities of the flow.

One loop beta functions:

Zi+ 2k%*/m?  gk*
1672(Z1 + k?/m?)? M4

Bz, =

5(Zy + 2k%/m?) gk*

By = 3212(Z, + k2/m2)3 M4 '




C) Explicit one-loop calculation of amplitudes:
- using dim. reg.

Two point function:
- only tadpole diagram

O S 1o myt s 1 ! m? 7
' ‘ ‘ logdm — v — 1 : _ O
p p 0z () 7 (W( B I (e)>

€ /

Only renormalizes the two-derivative kinetic energy
Pz, =0

But also there 1s no energy dependence within tadpole

Bz, =0



Full calculation of the scattering amplitude:

5ig? (s + ¢ + u?) s ig?
64n2Z2¢ 5760m2 22 25
7227,

+ &2 [ - 6Z12 (32 +12 4 u2) + 387179 (—3132 +9 (t2 - u2))
+25222 ((352 — 1957)s® — (157 — 37) (£2 + u?)) }

+63_1/2Z,§'/2\/4Zl — 825[16Z3(6s° + t* + u?)

47
—88Z175(165° + t* + u?) + s°Z3(41s> + t* + u?)] arccot Zl -1
842
dids [ —6Z7 (s* + % +u?) + 3tZ1 Zy (—31¢% + 9(s* + u?))
t2 1 A 149 &
+26222 ((352 — 1957)t2 — (157 — 37) (s> + u2)) ]
+6t712 252\ /42, — t2,[16Z3(s? + 61> + u?)
, 0 o g, y 4z
—8tZ1Z2(s* + 16> + u®) + tZ5 (s* + 41t + u?)] arccot ?Z—l -1
)
ZfZQ Z2 2 2 2 VA 1 2 9 2 2
2 [—6 (s +t* +u?) +3uZ Z, (—31u” + 9 (s* + %))
+2u?Z3 (352 — 1957)u” — (157 — 37) (s + %)) |
+6u~V225%\/4Z) —uZ5[16Z3(s* + £ + 6u?)
: > g 5, 5 : ; 47
—8uZ1Z2(s% + 2 + 16u?) + u?Z2(s® + 2 + 41u1)] arccot ﬁ -1
2
Z
+3s223 (4132 +£2+ u2) log (—*I—>
SZQ
+3t*Z3 (32 +418% + u2) log —ﬁ
2 tZ

OiSE 7. ’ . Z
+3u’Z3 (s* + t* + 41u®) log (— L >

'U,Zg
6(—uZs + Z1)3 Z
- 1
) u3 5 71 —uZs

6(—tZs + Z1)3

t3 Z1 —tZ,
6(—sZy + Z1)° 7 2.2 4 42 4 .2 S ¢ B D 252 3 i Bl
+ p log 7 — 52, [Z] (s +t +u)—2521Z2(—95 +t +u)+s Z2(4ls +t +u/\)]

dmp?Z:
+45022Z3 (s* + 2 + u?) log (%) }
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Understanding the scattering amplitude

Two energy regions with different behavior:

1) Low energy (£ <m)
- massive particle not dynamically active
- integrating out and forming EFT

2) Highenergy (E>m)

- all d.o.1f. are active
- simplifies amplitudes considerably

The beta functions can be different in these two regions



Low energy:

Renormalize g here: (“renormalize without running”)

| 5g°m* [1 o dmp n 11
g = go — — T 77— 108

So 5, = 0 at low energy

Residual matches EFT exactly with

g=g
_ 53g*m?
96 = T 384w2 M2
il 7g°m?
0 516m2M?2
19¢° | 41¢* | uf
98(LR) = To50m2 T 960n2 1°8 2
3 2 2 2
) _ 39 9> . FR
98\lr = 3503 T 150n2 8 2

But a. is finite here — “‘runnine without renormalization”



Recall the EFT matrix element:

The low energy matrix element:

9 2 2 2
M = 2M4(S +t° +u”)
ge (
2M6

9s(LR) ( 9s(1R)
M8

M8
2

g 4 —
41s*1 41t% 1
* 192072 M8 | ° o8 uR) * og(“%

e
AMS

+ s+ 7 +u®) +

st th 4 ut) +

+ 82(t2—|—u2)log( )—i—t2(s + u?)log(— 5
“R KR

with — 0 41g°
B Bas = 180m2
p g6 = 0 g2

(8%t + s*u + t*u + t%s + u’s + u’t)
(s*t? + s*u® + t?u?)
) + 41u* log(—- —

)—|—u (t? + s%)1

og(=)

Nz

Bz, =0



EFT understanding

At energies below m can integrate out heavy ghost
- only dynamical residual 1s light Goldstone field

Matches EFT description
- can be described by measurable local parameters g, gg, ...
- NO running in g
- running in gg at low energy
- as expected, also new local operator at E®
- coupling g, predicted by the full theory



High energy:

In terms of already renormalized coupling:

g 139m4 9 9 9
M = T {1+1287r2M4} (s + 17 4+u*)
> I .
i g

TIE [log (7n2)(138 +t°+u )+log(m2)(s + 13t + u )+log( )(s + t2 + 13u?)

1) Higher energy dependence has melted away
- E® and E°® dependence is no longer present
- multiple cancellations
- bubble diagrams

1 1 1 xm? + (1 — zYm2 — ¢?z(1 — z
IQ(mla ma, q2) - 1672 E +v - 10g47r —/O dCIZ’lOg( 1 ( )'u’22 q ( )):| ‘

at high energy:

2

—$
[15(0,0,s) — 215(0,m, s) + Ia(m,m, s)] ~ p log — + ...




New phenomenon: (AFAIK)

Operator “melting”

- Need E®, E® operators for £ < m

- But effects disappear for £ > m



2) Can define running coupling here:
- in terms of already renormalized coupling

_ 5g°m* U 13
— 1 R —
I(R) =9+ 35 ppa {Og <m2 20

Removes large logarithms
g(:u’R) ( 2
2M*4

g2m4

e e L —U
1 1352 + 2 + u?) +1 24132 +u) +log [ — ) (8% + 2 + 1342
19272 M*® {og (HR) (13s w?) +log (/L%) (s w) +log u% (s Hinal

+ 1% + u?)

Beta function here agrees with asymptotic form of FRG

8. — 5g°m*
9 16m2 M4

5(Z1 +2k*/m?) g°k*  5g*m*

by = 3212(Z, + k2/m2)3 M4 16m2M%’

k>>m



Understanding non-running (LLE) vs running (HE)

Loop diagram n this theory

B Pupv(P — 9)a(p — @)p
Lyvap = m* 22 _ 2 2 4
[m p*[(m?(p — q)? — (p — 9)*]
— nuvnaﬂ -+ NuaMvp -+ nuﬁnmx)
- order q terms

Only divergence 1s in F’
pv paf — L
T g = / )¢ [m? — p*][(m? — (p — q)?]
— — 'm,4I2 (m,m,q) =d(d+2)F + ....

1 1 1 xm? + (1 — x)m z(l—x
Iy (my, ma, q2) 6.2 { + v —logdm — /da:log( il )#22 ¢ )>} .
0

Low energy logm?2/u? - no running
High energy logq?/u? - running



This is standard behavior

Example top quark contribution to running of «
- at low energy

. o |1 m? q>

- divergence or scale dependence does not imply running

- contributes to running only past top threshold

In these theories there 1s a mass parameter and
a mass threshold



3) Higher Derivative Nonlinear Sigma Model

P. Hasenfratz (1989)
S=(1/f*)(cuSy + S, + ¢,8;, + ¢35, + €4S, + ¢5S5)

This is closest equivalent to quadratic gravity
- non-linear
- lowest order 1s non-perturbative EFT
- Hasenfratz calculates it as asymptotically free (one loop)
d N
Ef ~ 3272 /
- should be able to calculated on lattice
- also comparison to Asymptotic Safety (Percacci, Zanusso)




Higher Derivative Nonlinear Sigma Model

P. Hasenfratz (1989) Ulx) =e!/m(x)r

= (l/f?')((‘nsﬂ + 8; + 085 + €38, + ¢Sy + ¢5)

_ j‘ddy\‘ Tr( L" l( X ) (')“L."( X ) L"r l( X ) (')“L'((‘ X ) ) <« LOWCSt Order
- ;fTr( d,A,9,A4,+3,4,3,4,). “ Higher deriv.
1n propagator
- fTr d,4,3,4,— 3 4,0,4,). A(x)=U '(x)dU(x)

= 1 [ Te(4,4,4,4,+4,4,4,4,).

2 e o
\ Invariant interactions
f Tr( A4 A, )Tr(A,A,). . ‘

— starting at 4 pions
o

- .[Tr(A#Au)Tr(A“A"’) '



EFT for £ <m

Gasser Leutwyler
Bij L
Usual two derivative theory: jnens, Lu

1
200
Da.b - 6abD2+(}ab.

Here the E* term do run in this limit

1 1.
~ R RMY + 52,
1274 t39

ag =

Beta functions here are pure numbers — independent of couplings
_ 1
1

Bg = N

_ 1
.33 = §=

By = 0=

These do not match Hasenfratz nor FRG results



b1

B2

B3

Ba

Kull evaluation for £ > m: G Menezes
- background field method

1
SQuad = §/d4x,ﬂ_apabﬂ.b

Dab — _F(SabD D/ID DY + Baby)DuD;L + CaI)D;1 + gab
Divergent heat kernel coefficient
1 f# s Barvinsky
2= SRR + 2-Bu)B" + B £ .
" 7 T ] Vilkovisky

But need to remove tadpole effects

. f4 f4
4 4 2 —
=fb1+fb—1 ' B = b1+48b
2 o 4 4
£ 10Nf2 1652 | 8f2 8 = f—b +55
= b2+£b6 2N + Oé% = Oéi +OA_§ S 2 = 2% 2 4% 6
4 4 2
:fb3+fb7 1+4]Zf Ps = f_b3+f_8b7
5
B f4 f4 6Nf2 16f2 8f2 f4 f4
LN
bap — 2 =By By =0.
7  64n

This yields different results than cutott or FRG



Specific example: Renormalization of basic coupling f
- appears 1n two-point function - renormalization of propagator
D(q) =

1/f2

- HDNLSM conserves parity O
-only 2,4, 6, .... particle vertices occur g R

- At one loop, this then requires tadpole diagram p p

This is again a tadpole diagram

Hasenfratz gets running from A (or H—— )

FRG treatment uses k=;

d 2 N 4
%f - 327r2f

But again there 1s no real running at any energy
Br = 0.



Comparison with FRG

Never see power law running in amplitudes
- new operators with different signs, magnitudes

Logarithmic running 1s unreliable (some right, some wrong)

8, = 0 (E < m) Dok
9 = o By = ppma;e (BE<m)

59°m? VS
_ g2m . (E > m) _ 5g2m4
167=M 1672 M4

(E > m)

By = 3gm?
217 16r2 M4
gm?2k?
M4

(E<m)

Bz, =0 (all E) Vs
(E > m)

N 4
Br=0 (allE) B2 = —32{;2

And all the 3., are not correct



Implications for gravity:

Quadratic gravity
- EFT to full theory transition
- running of couplings needs to be redone
- will asymptotic freedom of f -z survive?

Asymptotic Safety
- power law running not seen in amplitudes
- logarithmic running also may not be physical
- EFT to full theory transition
- what does AS running imply for the real world?

But also:
u dependence does not always imply running
Example: Cosm(zlogical Constant doezs not run
SA =

m 1 7 3
_3271'2 E —’7+10g(4ﬂ')+10gm -+ 5




Food for thought

1) Does running even matter in these theories?

- we have
M ~ g(u) (s* + t* + u?) Holdom
-evenif g = 0 logarithmically Ebjecuon
€re

s? +t? +u? > oo faster
- strong interaction for amplitudes at high energy

2) Is it a problem to have strong gravity?
- QCD 1s renormalizable but strong at low E
- perhaps gravity 1s renormalizable but strong at high E
- requires alternate understanding
QCD strings -> gravity strings?



Summary:

Various flavors of renormalization group are inequivalent
- using physical amplitudes reveals physical running

Previously: power-law, A%, A* are not running effects in amplitudes

Here: Logarithmic running with HD is subtle
- “renormalization without running”
- “ running without renormalization”
- using EFT region for renormalization — runs like EFT there
- transition in logarithmic running at ghost mass
- running to no running (HDLSM)
- No running to running (HD shift invariant)
- no running at any scales (HDNLSM)

Disagrees with some of QQG and FRG literature

Strongly interacting region
- with derivative interactions overwhelms logarithmic running

Probably need numerical method to sort this out



