(Quantum) Gravity from Yang-Mills Theory

Olaf Hohm

- joint work on double copy \& double field theory with: R. Bonezzi, C. Chiaffrino, F. Diaz-Jaramillo, J. Plefka, 2109.01153, 2203.07397, 2212.04513 [hep-th]
- joint work with A. Pinto on cosmological double field theory, 2207.14788 [hep-th]
- with R. Bonezzi, C. Chiaffrino, F. Diaz-Jaramillo, work in progress

Motivation \& Outline

- Inspired by double copy from scattering amplitudes, slogan: \quad Gravity $=(\text { Yang-Mills })^{2} \quad$ but off-shell? [Bern, Carrasco \& Johansson (2008), Kawai-Lewellen-Tye (KLT) relations (1986)]
- Lagrangian double copy Replacing color indices as $a \rightarrow \bar{\mu}$, corresponding to a second set of spacetime momenta \bar{k} :

$$
A_{\mu}{ }^{a}(k) \rightarrow e_{\mu \bar{\mu}}(k, \bar{k})
$$

yields gravity as a double field theory (DFT) to cubic order.

- Algebraic double copy (gauge invariant and off-shell)
\rightarrow Yang-Mills theory as L_{∞}-algebra $\mathcal{K} \otimes \mathfrak{g}$
\rightarrow DFT as L_{∞}-algebra on $\mathcal{K} \otimes \overline{\mathcal{K}}$
- Weakly constrained theory (to quartic order!) on tori,
\rightarrow field theory of momentum and genuine winding modes
\rightarrow time-dependent (cosmological) backgrounds?

Part I: Lagrangian Double Copy

Yang-Mills at Quadratic Order

Yang-Mills action in D dimensions,

$$
S_{\mathrm{YM}}=-\frac{1}{4} \int d^{D} x \kappa_{a b} F^{\mu \nu a} F_{\mu \nu}{ }^{b}
$$

expanded to quadratic order in momentum space:

$$
S_{\mathrm{YM}}^{(2)}=-\frac{1}{2} \int_{k} \kappa_{a b} k^{2} \Pi^{\mu \nu}(k) A_{\mu}^{a}(-k) A_{\nu}^{b}(k),
$$

with $\int_{k}:=\int d^{D} k$ and the projector $\quad\left[\Pi^{\mu \rho} \Pi_{\rho \nu}=\Pi^{\mu}{ }_{\nu}\right]$

$$
\Pi^{\mu \nu}(k) \equiv \eta^{\mu \nu}-\frac{k^{\mu} k^{\nu}}{k^{2}}
$$

Gauge invariance

$$
\delta A_{\mu}^{a}(k)=k_{\mu} \lambda^{a}(k), \quad \Pi^{\mu \nu}(k) k_{\nu} \equiv 0
$$

where the gauge parameter $\lambda^{a}(k)$ is an arbitrary function. ${ }_{4}$

Lagrangian Double Copy at Quadratic Order

Substitution $A_{\mu}{ }^{a}(k) \rightarrow e_{\mu \bar{\mu}}(k, \bar{k}) \equiv e_{\mu \bar{\mu}}(K)$ together with

$$
\kappa_{a b} \rightarrow \bar{\Pi}^{\bar{\mu} \bar{\nu}}(\bar{k})
$$

yields

$$
S_{\mathrm{DC}}^{(2)}=-\frac{1}{4} \int_{k, \bar{k}} k^{2} \Pi^{\mu \nu}(k) \bar{\Pi}^{\bar{\mu} \bar{\nu}}(\bar{k}) e_{\mu \bar{\mu}}(-K) e_{\nu \bar{\nu}}(K)
$$

Democratic between k and \bar{k} due to level-matching constraint

$$
k^{2}=\bar{k}^{2}
$$

Gauge invariant under

$$
\delta e_{\mu \bar{\mu}}=k_{\mu} \bar{\lambda}_{\bar{\mu}}+\bar{k}_{\bar{\mu}} \lambda_{\mu}
$$

with two independent gauge parameters λ_{μ} and $\bar{\lambda}_{\bar{\mu}}$.

Double Field Theory at Quadratic Order

Claim: This is double field theory to quadratic order.
To see this we introduce 'auxiliary' scalar ϕ (DFT dilaton):
$S_{\mathrm{DC}}^{(2)} \propto \int_{k, \bar{k}}\left(k^{2} e^{\mu \bar{\nu}} e_{\mu \bar{\nu}}-\left(k^{\mu} e_{\mu \bar{\nu}}\right)^{2}-\left(\bar{k}^{\bar{\nu}} e_{\mu \bar{\nu}}\right)^{2}-k^{2} \phi^{2}+2 \phi k^{\mu} \bar{k}^{\bar{\nu}} e_{\mu \bar{\nu}}\right)$
so that integrating out ϕ,

$$
\phi=\frac{1}{k^{2}} k^{\mu} \bar{k}^{\bar{\nu}} e_{\mu \bar{\nu}} \quad(\Rightarrow \delta \phi=k \cdot \lambda+\bar{k} \cdot \bar{\lambda})
$$

we recover the double copy action above.
In (doubled) position space this is (free) DFT with derivatives $\partial_{\mu}=\frac{\partial}{\partial x^{\mu}}$ and $\bar{\partial}_{\bar{\mu}}=\frac{\partial}{\partial \bar{x}^{\mu}}$ subject to "weak constraint"

$$
\square \equiv \partial^{\mu} \partial_{\mu}=\bar{\partial}^{\bar{\mu}} \bar{\partial}_{\bar{\mu}}
$$

For $\partial_{\mu}=\bar{\partial}_{\bar{\mu}}$: (linearized) gravity + B-field + dilaton.
[Siegel (1993), Hull \& Zwiebach (2009)]

Lagrangian Double Copy at Cubic Order

Cubic part of Yang-Mills action

$$
S_{\mathrm{YM}}^{(3)}=-\mathrm{g}_{\mathrm{YM}} \int d^{D} x f_{a b c} \partial^{\mu} A^{\nu a} A_{\mu}^{b} A_{\nu}^{c}
$$

reads in momentum space
$S_{\mathrm{YM}}^{(3)} \propto \mathrm{g}_{\mathrm{YM}} \int_{k_{1}, k_{2}, k_{3}} \delta_{3}\left(k_{1}+k_{2}+k_{3}\right) f_{a b c} \Pi^{\mu \nu \rho}\left(k_{1}, k_{2}, k_{3}\right) A_{1 \mu}{ }^{a} A_{2 \nu}{ }^{b} A_{3 \rho}{ }^{c}$
with short-hand notation $A_{i} \equiv A\left(k_{i}\right)$ and

$$
\Pi^{\mu \nu \rho}\left(k_{1}, k_{2}, k_{3}\right) \equiv \eta^{\mu \nu} k_{12}^{\rho}+\eta^{\nu \rho} k_{23}^{\mu}+\eta^{\rho \mu} k_{31}^{\nu} \quad\left[k_{i j} \equiv k_{i}-k_{j}\right]
$$

\rightarrow obvious double copy rule:

$$
f_{a b c} \rightarrow \bar{\Pi}^{\bar{\mu} \bar{\nu} \bar{\rho}}\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right)
$$

Double Field Theory at Cubic Order

Double copied cubic action (with $K=(k, \bar{k})$ and $e_{i}=e\left(K_{i}\right)$)

$$
\begin{aligned}
S_{\mathrm{DC}}^{(3)} \propto \int d K_{123} & \delta\left(K_{1}+K_{2}+K_{3}\right) \\
& \times \Pi^{\mu \nu \rho}\left(k_{1}, k_{2}, k_{3}\right) \bar{\Pi}^{\bar{\mu} \bar{\nu} \bar{\rho}}\left(\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3}\right) e_{1 \mu \bar{\mu}} e_{2 \nu \bar{\nu}} e_{3} \rho \bar{\rho}
\end{aligned}
$$

yields in (doubled) position space

$$
\begin{aligned}
S_{\mathrm{DC}}^{(3)} \propto \int d x d \bar{x} e_{\mu \bar{\mu}}[& 2 \partial^{\mu} e_{\rho \bar{\rho}} \bar{\partial}^{\bar{\mu}} e^{\rho \bar{\rho}}-2 \partial^{\mu} e_{\nu \bar{\rho}} \bar{\partial}^{\bar{\rho}} e^{\nu \bar{\mu}}-2 \partial^{\rho} e^{\mu \bar{\rho}} \bar{\partial}^{\bar{\mu}} e_{\rho \bar{\rho}} \\
& \left.+\partial^{\rho} e_{\rho \bar{\rho}} \bar{\partial}^{\bar{\rho}} e^{\mu \bar{\mu}}+\bar{\partial}_{\bar{\rho}} e^{\mu \bar{\rho}} \partial_{\rho} e^{\rho \bar{\mu}}\right]
\end{aligned}
$$

This is cubic double field theory in Siegel gauge (which implies de Donder gauge for vanishing dilaton)!

Part II: Algebraic Double Copy

$\underline{L_{\infty} \text {-algebra and Perturbative Field Theory }}$

Algebraic interpretation of any (perturbative) field theory [Zwiebach (1993), O.H. \& Zwiebach (2017)]

$$
S=\frac{1}{2}\left\langle A, B_{1}(A)\right\rangle+\frac{1}{3!}\left\langle A, B_{2}(A, A)\right\rangle+\frac{1}{4!}\left\langle A, B_{3}(A, A, A)\right\rangle+\cdots
$$

on integer graded vector space

$$
\mathcal{X}=\bigoplus_{i} X_{i}
$$

structure: graded symmetric maps $B_{1}, B_{2}, B_{3}, \ldots,\left|B_{n}\right|=1$, obeying generalized Jacobi identities:

- B_{1} is nil-potent differential: $B_{1}^{2}=0$
- $B_{1}\left(B_{2}(x, y)\right)+B_{2}\left(B_{1}(x), y\right)+(-1)^{x} B_{2}\left(x, B_{1}(y)\right)=0$
- Jacobi up to homotopy

$$
\begin{aligned}
& B_{2}\left(B_{2}(x, y), z\right)+(-1)^{y z} B_{2}\left(B_{2}(x, z), y\right)+(-1)^{x} B_{2}\left(x, B_{2}(y, z)\right) \\
& +B_{1}\left(B_{3}(x, y, z)\right)+B_{3}\left(B_{1}(x), y, z\right)+\text { two terms }=0
\end{aligned}
$$

L_{∞}-algebra of Yang-Mills Theory I

Formulation of Yang-Mills suggested by string field theory:
$S=\int d^{D} x \operatorname{Tr}\left\{\frac{1}{2} A^{\mu} \square A_{\mu}-\frac{1}{2} \varphi^{2}+\varphi \partial_{\mu} A^{\mu}-\partial_{\mu} A_{\nu}\left[A^{\mu}, A^{\nu}\right]-\frac{1}{4}\left[A^{\mu}, A^{\nu}\right]\left[A_{\mu}, A_{\nu}\right]\right\}$
with Lie algebra valued fields, $A_{\mu}=A_{\mu}^{a} t_{a}$, etc.
Algebra: gauge parameters, fields, EoM \& Noether identities:

$$
\begin{array}{cccccc}
X_{-1} & \xrightarrow{B_{1}} & X_{0} \\
\lambda & & \mathcal{A} & & B_{1} & \\
\mathcal{E} & & \\
X_{1}
\end{array}
$$

with doublets $\mathcal{A}=\left(A^{\mu}, \varphi\right)$ and $\mathcal{E}=\left(E^{\mu}, E\right)$.
Linearized gauge invariance/EoM: $\delta \mathcal{A}=B_{1}(\lambda)$ and $B_{1}(\mathcal{A})=0$:

$$
B_{1}(\lambda)=\binom{\partial^{\mu} \lambda}{\square \lambda} \in X_{0}, \quad B_{1}(\mathcal{A})=\binom{\square A^{\mu}-\partial^{\mu} \varphi}{\partial \cdot A-\varphi} \in X_{1}
$$

$\underline{L_{\infty} \text {-algebra of Yang-Mills Theory II }}$

Non-linear Yang-Mills equations

$$
B_{1}(\mathcal{A})+\frac{1}{2} B_{2}(\mathcal{A}, \mathcal{A})+\frac{1}{3!} B_{3}(\mathcal{A}, \mathcal{A}, \mathcal{A})=0
$$

with, e.g.,

$$
\begin{aligned}
B_{2}^{\mu}\left(A_{1}, A_{2}\right) & =\partial_{\nu}\left[A_{1}^{\nu}, A_{2}^{\mu}\right]+\left[\partial^{\mu} A_{1}^{\nu}-\partial^{\nu} A_{1}^{\mu}, A_{2 \nu}\right]+(1 \leftrightarrow 2) \\
B_{3}^{\mu}\left(A_{1}, A_{2}, A_{3}\right) & =\left[A_{\nu 1},\left[A_{2}^{\nu}, A_{3}^{\mu}\right]\right]+5 \text { more terms }
\end{aligned}
$$

Non-linear gauge transformations \& algebra

$$
\delta \mathcal{A}=B_{1}(\lambda)+B_{2}(\lambda, \mathcal{A})
$$

where

$$
B_{2}(\lambda, \mathcal{A})=\binom{\left[A^{\mu}, \lambda\right]}{\partial_{\nu}\left[A^{\nu}, \lambda\right]}, \quad B_{2}\left(\lambda_{1}, \lambda_{2}\right)=-\left[\lambda_{1}, \lambda_{2}\right]
$$

Classical consistency \Leftrightarrow generalized Jacobi identities

The Kinematic Algebra: Stripping Off Color

Realize L_{∞}-algebra on \mathcal{X} as tensor product:
[A. M. Zeitlin (2010)]

$$
\mathcal{X}=\mathcal{K} \otimes \mathfrak{g}
$$

\mathfrak{g}-valued field lives in tensor product, $x=x^{a} t_{a} \rightarrow x^{a} \otimes t_{a}$
L_{∞} structure comes from algebraic structure on \mathcal{K} :

$$
\begin{aligned}
B_{1}(x) & =m_{1}\left(x^{a}\right) \otimes t_{a} \\
B_{2}\left(x_{1}, x_{2}\right) & = \pm f^{a}{ }_{b c} m_{2}\left(x_{1}^{b}, x_{2}^{c}\right) \otimes t_{a} \\
B_{3}\left(A_{1}, A_{2}, A_{3}\right) & =2 f^{a}{ }_{b e} f_{c d}^{e} m_{3}\left(A_{(1}^{b}, A_{2}^{c}, A_{3)}^{d}\right) \otimes t_{a}
\end{aligned}
$$

Specifically, m_{1}, m_{2}, m_{3} form C_{∞}-algebra (homotopy version of commutative and associative differential graded algebra)

$$
\begin{aligned}
m_{2}\left(m_{2}\left(u_{1}, u_{2}\right), u_{3}\right) & -m_{2}\left(u_{1}, m_{2}\left(u_{2}, u_{3}\right)\right)=m_{1}\left(m_{3}\left(u_{1}, u_{2}, u_{3}\right)\right) \\
& +m_{3}\left(m_{1}\left(u_{1}\right), u_{2}, u_{3}\right)+\text { two terms }
\end{aligned}
$$

More on Kinematic Algebra

Kinematic vector space $\mathcal{K}=\oplus_{i=0}^{3} K_{i}$ admits \mathbb{Z}_{2} grading into $\mathcal{K}^{(0)} \oplus \mathcal{K}^{(1)}$:

$$
\begin{array}{ccccc}
K_{0} & \xrightarrow{m_{1}} & K_{1} & \xrightarrow{m_{1}} & K_{2} \\
\lambda & & \xrightarrow{m_{1}} & K_{3} \\
& A_{\mu} & & E & \\
& \varphi & & E_{\mu} & \\
& & \mathcal{N}
\end{array}
$$

\Rightarrow second nilpotent operator b with $|b|=-1$, acting, e.g., as
$b(\mathcal{N})=\binom{\mathcal{N}}{0} \in K_{2}, \quad b\binom{E}{E_{\mu}}=\binom{E_{\mu}}{0} \in K_{1}, \quad b\binom{A_{\mu}}{\varphi}=\varphi \in K_{0}$,
satisfying

$$
b^{2}=0, \quad m_{1} b+b m_{1}=\square \mathbf{1}
$$

Hidden 'Lie-type’ algebra on \mathcal{K}

\mathcal{K} born as an 'associative-type' algebra, but is also of 'Lie-type': failure of b to obey Leibniz w.r.t. m_{2} almost Lie bracket :

$$
b_{2}\left(u_{1}, u_{2}\right):=b m_{2}\left(u_{1}, u_{2}\right)-m_{2}\left(b u_{1}, u_{2}\right)-(-1)^{u_{1}} m_{2}\left(u_{1}, b u_{2}\right)
$$

Batalin-Vilkovisky (BV) algebra:
commutative, associative product m_{2} and differential $b, b^{2}=0$, of second order $\Rightarrow b_{2}$ obeys Jacobi \& compatibility with m_{2}.
\mathcal{K} fails to be BV algebra because m_{2} is not associative
$\rightarrow \mathrm{BV}_{\infty}$ algebra? Not quite, since $m_{1} b+b m_{1}=\square 1$
$\rightarrow \mathrm{BV}_{\infty}$ algebra, where, e.g.,

$$
\begin{aligned}
m_{1}\left(b_{2}\left(u_{1}, u_{2}\right)\right)+b_{2}\left(m_{1}\left(u_{1}\right), u_{2}\right)+ & (-1)^{u_{1}} b_{2}\left(u_{1}, m_{1}\left(u_{2}\right)\right) \\
& =2 m_{2}\left(\partial^{\mu} u_{1}, \partial_{\mu} u_{2}\right) \neq 0
\end{aligned}
$$

Double Field Theory = Double Copy of Yang-Mills I

Introduce second copy $\overline{\mathcal{K}}$ of kinematic algebra
\Rightarrow tensor product $\mathcal{K} \otimes \overline{\mathcal{K}}$ is chain complex of functions of (x, \bar{x}) two natural differentials of opposite degrees:

$$
B_{1}:=m_{1} \otimes 1+1 \otimes \bar{m}_{1} \quad b^{-}:=\frac{1}{2}(b \otimes 1-1 \otimes \bar{b})
$$

satisfying $B_{1}^{2}=0,\left(b^{-}\right)^{2}=0$ and

$$
B_{1} b^{-}+b^{-} B_{1}=\Delta, \quad \Delta:=\frac{1}{2}(\square-\square)
$$

Eliminate ' Δ-failure' by going to subspace

$$
\mathcal{V}_{\mathrm{DFT}}:=\left\{\psi \in \mathcal{K} \otimes \overline{\mathcal{K}} \mid \Delta \psi=0, b^{-} \psi=0\right\}
$$

\Rightarrow precisely complex of DFT! E.g. for fields

$$
\left(e_{\mu \bar{\nu}}, e, \bar{e}, f_{\mu}, \bar{f}_{\bar{\mu}}\right) \in\left(K_{1} \otimes \bar{K}_{1}\right) \oplus\left(K_{0} \otimes \bar{K}_{2}\right) \oplus\left(K_{2} \otimes \bar{K}_{0}\right)
$$

includes graviton, B-field and scalar dilaton.

Double Field Theory = Double Copy of Yang-Mills II

Non-linear structure? \rightarrow higher brackets like 2-bracket:

$$
B_{2}:=-\frac{1}{4}\left(b_{2} \otimes \bar{m}_{2}-m_{2} \otimes \bar{b}_{2}\right)=-\frac{1}{2} b^{-}\left(m_{2} \otimes \bar{m}_{2}\right)
$$

obeys Leibniz rule on $\Delta=0$, where B_{1} and b^{-}anticommute. B_{2} obeys Jacobi for B_{3} defined with $\mathrm{BV} \square_{\infty}$ algebra of Yang-Mills; determines all data of gravity theory to quartic order.
E.g. cubic couplings:

$$
\begin{aligned}
\mathcal{L}^{(3)}= & \frac{1}{8} e^{\mu \bar{\nu}}\left(\bar{\partial}^{\bar{\lambda}} e_{\mu \bar{\lambda}} \partial^{\rho} e_{\rho \bar{\nu}}+\partial^{\lambda} e_{\lambda \bar{\rho}} \bar{\partial}^{\bar{\rho}} e_{\mu \bar{\nu}}+2 \partial_{\mu} e_{\lambda \bar{\rho}} \bar{\partial}_{\bar{\nu}} e^{\lambda \bar{\rho}}\right. \\
& \left.-2 \partial_{\mu} e^{\lambda \bar{\rho}} \bar{\partial}_{\bar{\rho}} e_{\lambda \bar{\nu}}-2 \bar{\partial} \bar{\nu} e^{\lambda \bar{\rho}} \partial_{\lambda} e_{\mu \bar{\rho}}\right) \\
& +\frac{1}{2} e^{\mu \bar{\nu}}\left(f_{\mu}-\partial_{\mu} e\right)\left(\bar{f}_{\bar{\nu}}-\bar{\partial}_{\bar{\nu}} \bar{e}\right)
\end{aligned}
$$

Only last line missed in 'naive' attempt.
Field-redefinition equivalent (but significant simplification!) to [Hull-Zwiebach (2009)].

DFT Gauge Transformations from Yang-Mills

Consider cubic vertex of Yang-Mills theory encoded in 2-bracket:

$$
b_{2}(A, A)_{\mu}^{a}=f^{a}{ }_{b c}\left(A^{b} \bullet A^{c}\right)_{\mu}
$$

unambiguously defines 'kinematic' product

$$
(v \bullet w)_{\mu}=v^{\nu} \partial_{\nu} w_{\mu}+\left(\partial_{\mu} v^{\nu}-\partial^{\nu} v_{\mu}\right) w_{\nu}+\left(\partial_{\nu} v^{\nu}\right) w_{\mu}-(v \leftrightarrow w)
$$

Structure of generalized Lie derivative of DFT. In fact,

$$
\delta_{\lambda}^{(1)} e_{\mu \bar{\mu}}=\frac{1}{4}\left(\lambda \bullet e_{\bar{\mu}}\right)_{\mu}+\frac{1}{2} \lambda_{\mu}(\bar{f}-\bar{\partial} \bar{e})_{\bar{\mu}},
$$

plus similar terms for $\bar{\lambda}_{\bar{\mu}}$.
Diffeomorphisms directly encoded in 3-vertex of Yang-Mills !!

Toward weakly constrained Double Field Theory

Subtlety of how to implement $\Delta=0$ constraint.

- put $\square=\bar{\square}$ acting on fields, parameters, and their products, \Rightarrow duality invariant way to identify coordinates x with \bar{x}
\Rightarrow strongly constrained DFT, reformulation of ' $\mathcal{N}=0$ SUGRA'
- weakly constrained DFT: $\square=\square$ on fields but not products \Rightarrow for tori T^{d} in principle obtainable from closed SFT by integrating out everything except KK and winding modes
\Rightarrow algebraic interpretation as homotopy transfer
[Sen (2016), Arvanitakis, O. H., Hull, Lekeu $(2020,2021)]$
- explicit construction for toroidal dimensions: 1) total space $\mathcal{K} \otimes \overline{\mathcal{K}}$ of unconstrained functions of (x, \bar{x}) " $B V_{\infty}^{\Delta}$ algebra"; 2) homotopy transfer to $\Delta=0$ plus non-local shift of B_{3}
\Rightarrow genuine L_{∞} algebra of weakly constrained fields
[R. Bonezzi, C. Chiaffrino, F. Diaz-Jaramillo, work in progress]

Summary \& Outlook I

- simplest double copy implementation at Lagrangian level:
\rightarrow gauge invariant DFT to quadratic order
\rightarrow Siegel gauge fixed DFT to cubic order
- Off-shell, local and gauge invariant double copy to quartic order:
\rightarrow Yang-Mills as homotopy Lie algebra or
L_{∞}-algebra $\mathcal{K} \otimes \mathfrak{g}$ in terms of 'kinematic' C_{∞}-algebra \mathcal{K}
\rightarrow hidden 'Lie-type' algebra on $\mathcal{K}: ~ \mathrm{BV}_{\infty}$ algebra
[Reiterer, 1912.03110 [math-ph]]
$\rightarrow L_{\infty}$-algebra of DFT on $\mathcal{V}=[\mathcal{K} \otimes \overline{\mathcal{K}}]_{\text {level-matched }}$
- to all orders for strongly constrained DFT or $\mathcal{N}=0$ SUGRA? would be complete first-principle derivation of double copy!
- classical solutions? \rightarrow black holes!

Summary \& Outlook II

- Can one include time (or more non-compact directions) in a weakly constrained DFT?
For $\mu, \bar{\mu}, \ldots$ toroidal/spacelike quadratic Lagrangian

$$
\mathcal{L}_{\mathrm{DFT}}^{(2)}=-\left(D_{t} \phi\right)^{2}-D_{t} e^{\mu \bar{\nu}} D_{t} e_{\mu \bar{\nu}}+\mathcal{L}_{\text {spatial }}
$$

where

$$
\begin{aligned}
D_{t} e_{\mu \bar{\nu}} & :=\partial_{t} e_{\mu \bar{\nu}}-\partial_{\mu} \overline{\mathcal{A}}_{\bar{\nu}}+\bar{\partial}_{\bar{\nu}} \mathcal{A}_{\mu} \\
D_{t} \phi & :=\partial_{t} \phi+\partial_{\mu} \mathcal{A}^{\mu}+\bar{\partial}_{\bar{\mu}} \overline{\mathcal{A}}^{\bar{\mu}}
\end{aligned}
$$

- weakly constrained DFT known to cubic order in time-dependent (FRW) backgrounds [O.H., Allison Pinto, 2207.14788]
- double copy or homotopy algebra techniques for non-trivial backgrounds?

