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We investigate the recently proposed hybrid inflation models with two stages of inflation. We
show that quantum fluctuations at the time corresponding to the phase transition between the two
inflationary stages can trigger the formation of a large number of inflating topological defects. In
order to study density perturbations in these models we develop a new method to calculate density
perturbations in a system of two scalar fields. We show that density perturbations in hybrid inflation
models of the new type can be very large on the scale corresponding to the phase transition. The
resulting density inhomogeneities lead to a copious production of black holes. This could be an
argument against hybrid inflation models with two stages of inflation. However, we find a class of
models where this problem can be easily avoided. The number of black holes produced in these
models can be made extremely small, but in general it could be sufficiently large to have important
cosmological and astrophysical implications. In particular, for certain values of parameters these
black holes may constitute the dark matter in the universe. It is also possible to have hybrid models
with two stages of inflation where the black hole production is not suppressed, but where the typical
masses of the black holes are very small. Such models lead to a completely different thermal history
of the universe, where post-inflationary reheating occurs via black hole evaporation.

PACS numbers: 98.80.Cq SU-ITP-96-20, SUSSEX-AST 96/5-1, RCG-96/07, astro-ph/9605094

I. INTRODUCTION

A period of “inflation” or accelerated expansion in the
early universe is an attractive idea in modern cosmol-
ogy. Acceleration of the scale factor could drive the uni-
verse towards homogeneity, isotropy and spatial flatness.
However it is the ability of quantum fluctuations in the
fields driving inflation to produce a nearly scale-invariant
spectrum of quantum fluctuations that provides the most
powerful test of the inflationary paradigm and may allow
us to constrain the physics involved. Cosmological ob-
servations allow us to measure the amplitude and tilt of
the primordial density and, possibly, gravitational wave
spectra on scales that would have left the horizon during
inflation.

The first inflationary models such as the old and the
new inflationary universe scenario presumed that infla-
tion began in the false vacuum state after the high tem-
perature phase transitions in the early universe [1,2].
Later it was proposed that all possible initial conditions
should be considered without necessarily assuming initial
thermal equilibrium, and see whether some of these con-
ditions may lead to inflation. This scenario was called
chaotic inflation [3]. For many years the idea of chaotic
initial conditions seemed too radical, since it implied a
considerable deviation from the idea of the hot Big Bang.
It was argued that for a successful realization of infla-
tionary theory one should satisfy so-called “thermal con-
straints” [4]. However, gradually it was understood that
the assumption of thermal initial conditions is neither
natural nor helpful for inflationary theory [5]. As a re-

sult, most of the models investigated now belong to the
class of chaotic inflation, which provides the most general
framework for the development of inflationary cosmology.

The simplest models of chaotic inflation include theo-
ries with potentials V (φ) such as m2φ2/2 or λφ4/4. In-
flation occurs in these theories at φ > MP. However, one
may also consider chaotic inflation near φ = 0 in models
with potentials which could be used for implementation
of the new inflation scenario, such as −m2φ2/2 + λφ4/4
[6]. For brevity, one may call inflation in such models
“new inflation”, to distinguish it from inflation at large
φ, but strictly speaking these models also belong to the
general class of chaotic inflation models: the original new
inflationary universe scenario based on the theory of high
temperature phase transitions have never been success-
fully implemented in realistic theories.

The simplest models of chaotic inflation such as the
model m2φ2/2 have many advantages, including natural
initial conditions near the Planck density and the exis-
tence of the regime of eternal self-reproduction of the
universe [5]. Normalizing the mass scale by the fluctua-
tions in the microwave background observed by COBE [7]
gives m " 2×1013 GeV and the energy density at the end
of inflation is V (φ) " (1016 GeV)4. At this energy grav-
itational waves contribute about 10% of the microwave
background fluctuations. The tilt of the density pertur-
bation spectrum in this model is n − 1 " −0.03.

However, inflation occurs in such models only for
φ >∼ MP. It is quite possible to have inflation at φ > MP

in models with polynomial potentials, but in string the-
ory and supergravity one often encounters potentials
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Hybrid Inflation

Consider first the potential at f = 0:   

If c0 > 1, this is an inflationary Higgs-type potential, with eternal inflation at 
the top (see next page). Eternal inflation implies the amplitude of adiabatic 
perturbations O(1), resulting in PBH formation.

In fact, the condition c0 > 1 is too strong, because large perturbations are 
generated already on the way towards f = 0.

For c = 0, it is just the uplifted quadratic potential

Garcia-Bellido, A.L, and Wands  1996
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but then it turns and rolls down along the valley towards very large � with V (�) < 0, and the

universe collapses. It is possible to solve this problem by a proper modification of the potential

used in [44] at � > �c. Fortunately, this issue does not appear in the original version of the

hybrid inflation scenario [2, 3], and in the hybrid attractor models described in our paper.

4 Evolution of the field � in the single-field approximation

As we have argued in section 2, one can learn quite a lot about the waterfall stage of inflation

in hybrid inflation with �0 & 2
p
3 by ignoring the field ' and investigating the single field

model with
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Many of our results will be valid for any single field inflationary potential; they will be based

on the general theory of eternal inflation [63–66] which we will remind here following the

general theory of eternal inflation developed in [66].

In the slow-roll approximation, ignoring quantum fluctuations, during each e-folding the
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If �� > |��|, these quantum jumps may bring half of the 20 horizon-size domain uphill, back

to where we started. This leads to the regime of eternal inflation [66]. Remarkably, as one can

easily see, the condition �� < |��| required for the absence of eternal inflation is equivalent

to the condition that the amplitude of perturbations is smaller than O(1):

As =
V 3

12⇡2V 2
�

. 1. (4.4)

This is not a coincidence, since eternal inflation would imply that inflation continues in some

parts of the universe, whereas in many other parts of the universe inflation is over and the

energy density rapidly becomes small.

In the context of the model (4.1), the criterion (4.4) is always violated at the top of the

potential where V�⇠ 0. However, quantum fluctuations in each horizon size domain during one

e-folding of inflation shift the field � from � = 0 by �� ⇠
H

2⇡
. Thus one can use this estimate
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For                 hybrid inflation is eternal, and the amplitude of the fluctuations 
produced at the ridge of the potential with                 is extremely large.

By considering                   one can make the amplitude of perturbations 
smaller than O(1), but still sufficiently large for PBH production. (Note that 
Vc,c(f) <  Vc,c(0)  for  0 < f < fc )
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To get ns < 1, Clesse and Bellido in 2015 proposed to change the inflaton
potential, making it tachyonic.

However, in the simplest hybrid inflation scenario with a quadratic inflaton
potential one has ns > 1, which contradicts WMAP and Planck results.

Unfortunately, extreme fine-tuning of initial conditions is required to have 
inflation and avoid the tachyonic instability in this scenario.

In hybrid inflation we deal with a two-field evolution, so the full theory of 
what is going on is more complicated, but the simple argument given 
above gives a qualitatively correct result.
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Figure 3: Initial conditions problem for the model (1) of Ref. [44]. If evolution begins at smaller values

of �, as shown by the black line, the field evolution is chaotic, and hybrid inflation regime typically does not

emerge. If evolution begins at greater values of �, as shown by the blue line, the field � turns, runs to infinity,

its tachyonic potential becomes negative, and the universe collapses. In this example, we use the parameters of

Fig. 3 in Ref. [44] with �c = 0.1 and (�i, �i) = (3, 3), (4, �2) for the black and blue lines respectively.

Because of the rapid decrease of the kinetic energy of the field � during inflation, the amplitude

of its oscillations about this minimum decreases exponentially fast. Then, the field ' starts

slowly moving towards its smaller values, see Fig. 2. At
p
6↵ & ' > 'c, the minimum of

this potential moves further away from zero. Close to ' = 'c, the part of the potential ⇠ �2

vanishes, so it can no longer protect the field � from growing due to the linear term d�.

Thus, even though this term d� is very small, it pushes the field � away from the � = 0.

Eventually, the fields falls down to one of the two minima at |�| ⇡ �0 at ' = 0. The choice of

the minimum is completely independent on the initial conditions on the two fields, and rather

depends on the sign of the coe�cient d of the tiny linear term.

A more important statement is that if the initial values of the field ' are su�ciently large,

the original oscillations of the field � becomes exponentially damped, and the final results of

our calculations of the spectrum of perturbations do not depend on initial conditions.

Simplicity and robustness of this process is one of the advantages of the original hybrid

inflation scenario, as well as of its ↵-attractor generalization. Its most important part is the

existence of a long valley to which the field � falls, and the positive slope of the potential with

respect to the field ' which pushes it along the valley towards ' = 0 [2, 61, 62].

The situation can be very di↵erent if one attempts to make the parameter m2 negative,

as in the toy model described in [44]. In that case, if one considers small initial values of the

field �, the field moves to � = 0, but without a significant fine-tuning of initial conditions it is

di�cult to achieve a long hybrid inflation regime starting with large �, see Fig. 3. On the

other hand, if one considers large initial values of �, the field � initially moves to smaller �,
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One may try to add higher order terms to the Clesse-Bellido potential

Yuichiro Tada and Masaki Yamada   2304.01249

However, the resulting potential with the parameters used in 2304.01249 
does not have a minimum at V = 0, so it requires additional modifications
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All of these models are symmetric with respect to the change of 
sign of the Higgs field y. This results in production of superheavy 
topological defects, which requires additional modifications of these 
models.

To resolve all of these problems, we turned out to the a-attractor 
generalizations of the hybrid inflation scenario.

Braglia, A.L., Kallosh and Finelli 2022



In canonical variables

Asymptotically at large values of the inflaton

Additional information can be obtained for the hilltop models. The simplest models

V = V0(1 � �4/m4) represented by the green band in Fig. 8 of the Planck2018 data release [2]

lead to a universal prediction ns = 1�3/Ne for all sub-Planckian values of the mass parameter

m . 1. This prediction is strongly disfavored by the Planck2018 data for the number of

e-foldings Ne ⇠ 50 � 60. These models could provide a good match to the Planck data for

m & 10. However, in that case they predict post-inflationary collapse of the universe, which

cannot be avoided without a substantial modification of such models, strongly modifying their

predictions [3].

More complicated versions of the hilltop models, such as the new inflation model with the

Coleman-Weinberg potential V ⇠ 1 + �4

m4 (2 log �2

m2 � 1), are marginally compatible with the

Planck2018 data [3], though only for m � 1. Now they are strongly disfavored by the results

of the recent BICEP/Keck data release, as we show in Fig. 2.

New Inflation
(Coleman-Weinberg 
potential)

Figure 2: Models of the type of new inflation [4, 5] based on the Coleman-Weinberg hilltop potential are

marginally compatible with Planck2018 data, but strongly disfavored by the BICEP/Keck data [1].

However, one can recover all of these losses by making a relatively simple generalization

of the kinetic term of the scalar field. After this generalization, most of the improved models,

which we called “cosmological attractors,” become compatible with all presently available

inflation-related observational data, almost independently of the choice of the scalar potential

prior to the generalization.

2 ↵-attractors

2.1 T-models

We will begin with describing ↵-attractors [6–12]. The simplest example is given by the theory
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Here �(x) is the scalar field, the inflaton. In the limit ↵ ! 1 the kinetic term becomes

the standard canonical term � (@µ�)2

2 . The new kinetic term has a singularity at |�| =
p

6↵.

However, one can get rid of the singularity and recover the canonical normalization by solving

the equation @�

1��2

6↵

= @', which yields � =
p

6↵ tanh 'p
6↵

. The full theory, in terms of the

canonical variables, becomes a theory with a plateau potential

Lp
�g

=
R

2
� (@µ')2

2
� V

�p
6↵ tanh

'p
6↵

�
. (2.2)

We called such models T-models due to their dependence on the tanh 'p
6↵

. Asymptotic value

of the potential at the plateau at large ' > 0 is given by

V (') = V0 � 2
p

6↵ V 0
0 e

�
q

2
3↵'

. (2.3)

Here V0 = V (�)|�=p
6↵ is the height of the plateau potential, and V 0

0 = @�V |�=p
6↵. The

coe�cient 2
p

6↵ V 0
0 in front of the exponent can be absorbed into a redefinition (shift) of the
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are determined only by two parameters, V0 and ↵, i.e. they do not depend on any other

features of the potential V (�). That is why they are called attractors.
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Figure 3: The figure illustrating the main results of the BICEP/Keck [1] superimposed with the predictions

of ↵-attractor T-models with the potential tanh2n 'p
6↵

[8, 10]. Each of these models starts at some �2n (at

↵ ! 1) and is forced to go down with decreasing ↵ [8] into the area favored by the BICEP/Keck.

The amplitude of inflationary perturbations As in these models matches the Planck

normalization for V0
↵ ⇠ 10�10. For the simplest model V = m2

2 �2 one finds

V = 3m2↵ tanh2 'p
6↵

. (2.4)
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Here                                    This factor can be absorbed in the 
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Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.

2.2 E-models

The second family of ↵-attractors called E-models is given by
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The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0

⇣
1 � e
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q

2
3↵'
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. (2.8)

For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.
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goes straight, E-model band first slightly bends to the right, to larger values of ns, but later
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For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any
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Benchmarks for T-models and E-models
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BICEP/Keck2021 do not claim a discovery of the gravitational waves. The 
error bars of their result                                are too large,                    .
However, it is quite intriguing that the yellow and red dashed lines, which 
show the predictions of the largest option a = 7/3, go straight through the 
center of the dark blue ellipse favored by Planck/BICEP/Keck data.                            
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1 Introduction

The new data release from BICEP/Keck considerably strengthened bounds on the tensor to

scalar ratio r [1]: r0.05 = 0.014+0.010
�0.011 (r0.05 < 0.036 at 95% confidence). The main results

are illustrated in [1] by a figure describing combined constraints on ns and r, which we

reproduce here in Fig. 1. These new results have important implications for the development

of inflationary cosmology. In particular, the standard version of natural inflation as well as

the full class of monomial potentials V ⇠ �n are now strongly disfavored.

Figure 1: BICEP/Keck results for ns and r [1]. The 1� and 2� areas are represented by dark blue and light

blue colors. The purple region shows natural inflation, and the orange band corresponds to inflation driven by

scalar field with canonical kinetic terms and monomial potentials.
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Running maximum likelihood search on simulations we obtain unbiased results and find that σðrÞ ¼ 0.009.
These are the strongest constraints to date on primordial gravitational waves.

DOI: 10.1103/PhysRevLett.127.151301

Introduction.—The ΛCDM standard model of cosmol-
ogy is able to describe the observable universe in a
statistical manner using only six free parameters.
Measurements of the cosmic microwave background
(CMB) [1] are one the key pillars of this model and
now constrain its parameters with percent-level precision
(see most recently Ref. [2]).
The ΛCDM model describes how the universe evolved

from an initial high energy state ðT ≫ 1012 KÞ, and the
conditions at that time can be inferred from observations:
fractionally small, Gaussian, adiabatic perturbations with a
slightly red power law spectrum ðns ≲ 1Þ. Inflationary
theories naturally explain such conditions as the outcome
of a prephase of exponential expansion during which the
scale of the protouniverse increased by a factor of ∼e60.
Inflation makes an additional prediction which has not yet
been observed—a background of tensor perturbations, also
known as gravitational waves (see Ref. [3] for a review and
citations to the original literature). There are many specific
inflationary models and classes thereof. If we can detect or
set limits on primordial gravitational waves we can set
limits on these models [4], and probe physics at energy
scales far higher than can ever be accessed in laboratory
experiments.
A polarization pattern can be decomposed into E-mode

(gradient) and B-mode (curl) components. Under the
ΛCDM standard model the CMB polarization pattern is
mostly E mode, with a much smaller B-mode component
which arises due to gravitational deflections (lensing) of the
CMB photons after their last scattering [5]. Since primor-
dial gravitational waves will produce E modes and B
modes approximately equally it was realized in the late
1990s that the best way to search for them is to look for an
excess B-mode signal [6–8]. Additional nonprimordial B
modes are produced by astrophysical foreground emis-
sions, primarily from our own galaxy, but these have
different frequency spectra than the CMB and can be
separated from it using multifrequency measurements.
Our BICEP/Keck program first reported detection of an

excess over the lensing B-mode expectation at 150 GHz in
Ref. [9]. In a joint analysis using multifrequency data from
the Planck experiment it was shown that most or all of this
is due to polarized emission from dust in our own galaxy
([10] hereafter BKP). In Ref. ([11] hereafter BK14) we
improved the constraint using Keck Array data at 95 GHz
taken during the 2014 season, and in Ref. ([12] hereafter
BK15) we improved again adding Keck Array data at 95
and 220 GHz taken during the 2015 season. In this Letter
[hereafter BK18] we add large amounts of new data taken

by Keck Array at 220 GHz and BICEP3 at 95 GHz during
the 2016, 2017, and 2018 observing seasons. This paper
follows BK15 very closely in the methods, structure, and,
in places, even the wording, mainly just adding additional
experimental data. This improves the constraint on pri-
mordial gravitational waves parametrized by the tensor-to-
scalar ratio r by more than a factor of 2 over our previous
result to r0.05 < 0.036 at 95% confidence, setting important
additional limits on inflationary models.
Instrument and observations.—The BICEP2 receiver

observed at 150 GHz from 2010–2012 [13]. The Keck
Array was essentially five copies of BICEP2 running in
parallel from 2012–2019, initially at 150 GHz but switch-
ing over time to 95 and 220 GHz [14]. BICEP3 is a single
similar, but scaled up, receiver which commenced science
observations in the 2016 Austral winter season [15].
Whereas the BICEP2 and Keck 150 and 220 GHz receivers
each contained ≈500 bolometric detectors BICEP3 con-
tains ≈2500 detectors. The aperture size is also increased
from ≈0.25 m to ≈0.5 m. The Keck receivers were
mounted on a single telescope mount (movable platform),
while BICEP3 occupies a separate mount previously used
for BICEP2 on a nearby building. All of these telescopes
are located at the South Pole Station in Antarctica. The
mounts scan the receivers across the sky, and the cryogenic
detectors track the intensity of the incoming microwave
radiation. The detectors are arranged as interleaved
orthogonally polarized pairs in the focal planes and the
pair difference timestreams are thus measures of the
polarized emission from the sky [16]. At the South Pole
the atmosphere is exceptionally transparent and stable at
the observation frequencies ([17], Fig. 5).
BICEP2 and Keck Array both mapped a region of sky

centered at RA 0h, Dec. −57.5° with an effective area of
≈400 square degrees. BICEP3 has a larger instantaneous
field of view and hence naturally maps a larger sky area
with an effective area of ≈600 square degrees. We have
perturbed the center of the BICEP3 scan region such that
most of this additional area falls on the higher declination
side of the sky patch in an attempt to stay away from
regions where the Planck data indicates polarized dust
contamination may be higher. The BK15 dataset consisted
of 4, 17, and 2 receiver years at 95, 150, and 220 GHz,
respectively. BICEP3 is equivalent to about eight of the
Keck Array 95 GHz receivers [15] so the BK18 dataset is
equivalent to about 28, 18, and 14 Keck receiver years at
95, 150, and 220 GHz, respectively.
Maps and power spectra.—We make maps and power

spectra using the same procedures as in our previous series
of papers. The timestream data are binned into pixels on the
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Start with the model

For q > 2  and small r one has an attractor regime with 
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Figure 4: The BICEP/Keck [1] figure superimposed with the predictions of the simplest ↵-attractor T-model

with the potential tanh2 'p
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(red lines for Ne = 50, 60).

3 Other examples of cosmological attractors

3.1 Pole inflation, D-brane inflation

↵-attractors represent a special version of a more general class of attractors, the so-called pole

inflation models [9]. It is obtained by slightly generalizing equation (2.6):
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For D5 branes and small m one has

The last potential emerges also in the model of two interacting fields with 
the flattening mechanism introduced by Stewart in 1995, and by Dong, 
Horn, Silverstein and Westphal in 2011

In particular, for D3 branes and small m one has KKLTI potential
Their attractor formula for the ns is given in (3.2), whereas the formula for r depends on the
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In Fig. (5) we give a combined plot of the predictions of the simplest ↵-attractor models and

Dp-brane inflation for N = 50 and 60 [12].

Figure 5: A combined plot of the predictions of the simplest ↵-attractor models and Dp-brane inflation for

N = 50 and 60. From left to right, we show predictions of T-models, E-models (yellow and red lines). Then we

show predictions of Dp � Dp brane inflation with p = 3, 4, 5, 6. They are shown by purple, green, orange and

blue lines correspondingly for potentials in eq. (3.3) with k = 4, 3, 2, 1. The blue data background corresponds

to Planck 2018 results including BAO.

The potentials which appear in the pole inflation scenario may have an alternative

interpretation, not related to Dp-branes. For example, a quadratic model V ⇠ '2

m2+'2 was

proposed in [18] as an example of a flattening mechanism for the '2 potential due to the

inflaton interactions with heavy scalar fields. Similar potentials with flattening may also

appear in axion theories in the strong coupling regime [19].

Independently of their interpretation, the pole inflation models may serve as a powerful

tool for parametrization of all observational data since all data for ns and r can be sorted

out using vertical � stripes with ns = 1 � �
Ne

[11, 12]. As illustrated by Fig. (5), just a

few of such stripes may completely cover all possible values of ns and r compatible with the

observational data. This parametrization works especially well in the small r limit, which

is the top priority for parametrizing the results of the ongoing and planned search for the

inflationary gravitational waves.
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From left to right, we show predictions of T-models and E-models (yellow 
and red lines for Ne = 50, 60) and of Dp brane inflation with p = 3, 4, 5, 6 
(purple, green, orange and blue lines). These models, belonging to the 
general class of pole inflation, can describe gravitational waves all the 
way down to r =0.



Start with the model

The usual assumption was that V(r) and its derivatives is not singular 
at r = 0. Now we will relax this requirement. We will still require V(r) to 
be non-singular, but we will allow its derivatives to be singular. 

Example: For                                      the inflaton potential in canonical 
variables is

Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.

2.2 E-models

The second family of ↵-attractors called E-models is given by
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The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0

⇣
1 � e

�
q

2
3↵'

⌘2
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For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.
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Using similar but different functions V(r) one can obtain a broad class 
of potentials approaching a plateau at                  as inverse powers of 
the field. 
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Here k is an arbitrary positive number (not necessarily integer). Independently 
of the detailed structure of the potential, one findsIn particular, the spectral index ns depends only on k [23]:

ns = 1� 2

Ne

k + 1

k + 2
. (1.5)

Thus, investigation of any model with a potential having this behavior at large ' gives

predictions that are valid for a broad class of the models of this type. That is why they

are called attractors. Note that for any k > 0 the value of ns is greater than the universal

prediction of the exponential ↵-attractors ns = 1� 2/Ne ⇠ 0.964 for Ne ⇠ 55. In the small k

limit, the value of ns for these models can reach 1� 1/Ne ⇠ 0.98. For small µ, these models

can describe any small values of r, all the way down to r = 0. That is why the predictions of

this class of inflationary models completely cover the right-hand side of the sweet spot of the

Planck/BICEP/Keck data [16, 17, 23].

This is illustrated by Fig. 2. The band between the two yellow lines corresponding to

Ne = 50 and 60 is described by the simplest T-model with V ⇠ tanh2 '
6↵ , the two red lines

correspond to E-models with V ⇠ (1� e
�
q

2
3↵'

)2, the purple lines correspond to the KKLTI

model with V ⇠ '4

'4+µ4 , and the orange lines describe the model with V ⇠ '2

'2+µ2 .
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Figure 2: Predictions of the simplest exponential ↵-attractors and KKLTI models superimposed with the

Planck2018 constraints on ns and r. The band between the two yellow lines is described by the simplest

T-model, the two red lines correspond to the simplest E-model. The purple lines correspond to the quartic

KKLTI model, and the orange lines describe the quadratic KKLTI model. All bands shown here correspond to

Ne from 50 to 60.

As explained in [3, 23], all of these models belong to the general class of pole inflation

[14, 23]. The T- and E- models have a pole in the kinetic term of order q = 2, which is the

consequence of the SL(2,R) or SU(1, 1) symmetry of the kinetic terms. They have clear

geometric origin corresponding to the metric, respectively,

ds
2 = �3↵

dTdT̄

(T + T̄ )2
, ds

2 = �3↵
dZdZ̄

(1� ZZ̄)2
, T =

1 + Z

1� Z
. (1.6)
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For any positive k, one has

In the limit of small k, one has  
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There are many attempts to resolve the disagreement between Planck results and 
supernova data by considering early dark energy, new early dark energy, etc. Some 
of these attempts favor large values of ns, all the way to ns = 1.  While this is an 
exotic possibility, it is better to be prepared and consider maximally flexible 
inflationary models. Can we get ns = 1 from cosmological attractors? 

There is a special class of inflationary models where ns = 1 
is an attractor point: Hybrid Inflation.

are no longer satisfied. This assumption is natural indeed, but one can find, or engineer, some

models where it may be violated.

As we already mentioned in the previous section, the simplest possibility to do it is to

arrange for a second stage of inflation with duration �N . This modification decreases ns. For

exponential ↵-attractors (1.1) this decrease is not particularly desirable.

However, there is yet another possibility, which may allow many interesting variations of

the main theme. One may consider multi-field models, where the single-field inflation regime

ends prematurely because of the instability of the inflationary trajectory, or because of its

sharp turn.

The simplest well-known example is provided by hybrid inflation [1, 2]. In this scenario,

inflation driven by the field � is terminated because of the tachyonic waterfall instability

with spontaneous generation of the second field �. This mechanism involves two ingredients,

each of which allow to control (increase) ns. First of all, this scenario involves uplift of an

inflationary potential by some potential depending on �. This uplift disappears after the

waterfall instability, but during inflation with � > �c the uplift increases V while keeping V 0

intact. This decreases slow-roll parameters and increases ns for � > �c. Secondly, one can

control the value of �c by a proper choice of parameters. As a result, one can also control

the value of the field �N corresponding to N e-foldings prior to termination of inflation. This

provides an additional tool to control ns.

In this paper we will consider hybrid models of ↵-attractors and explain how both of

these mechanisms a↵ect inflationary predictions for ns and r. To avoid misunderstandings,

we should emphasize that hybrid ↵-attractors are more complicated than the single-field

↵-attractors. However, realistic inflationary models often involve more than one scalar field.

As we will see, investigation of their ↵-attractor versions can be quite instructive.

3 Hybrid inflation

3.1 Original hybrid inflation model

Let us first consider the simplest hybrid inflation model [1, 2]. The e↵ective potential of this

model is given by

V (�,�) =
1

4�
(M2 � ��2)2 +

m2

2
�2 +

g2

2
�2�2 . (3.1)

To illustrate the main features of this potential, we show it in Fig. 1.
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where � is related to the Kähler curvature

� =

r
2

3↵
, �2 =

2

3↵
. (5.5)

This form correctly describes the potential for

e��s ⌧ 1 . (5.6)

We consider a stage of N � 1 e-foldings of inflation which begins at sN and ends at sc.

Inflation may continue when the field reaches sc, or it may end abruptly if the inflationary

trajectory changes at sc because of the waterfall instability at in hybrid inflation.

Equation describing evolution of s in the slow-roll regime is

ds

dN
=

dV
ds

V (s)
=

V0� e�� s

Vup + V0(1� e�� s)
. (5.7)

We are interested in the regime e�� s ⌧ 1. In that case one can ignore the exponent in the

denominator and find a solution of this equation:

e� sN =
�2V0N

Vup + V0
+ e� sc . (5.8)

where sN is the value of the field s at N e-foldings before the end of this stage of inflation

before it reaches sc, i. e. sN = sc at N = 0.

The standard expression for ns is

ns = 1� 3

✓
V 0

V

◆2

+ 2
V 00

V
⇡ 1� 3V 2

0 �
2 e�2� sN

(Vup + V0)2
� 2V0�2e�� sN

Vup + V0
⇡ 1� 2V0�2e�� sN

Vup + V0
. (5.9)

Here the derivatives are taken with respect to s. Using equation (5.8), we find

ns = 1� 2V0�2

V0 �2N + (Vup + V0)e�sc
. (5.10)

In the largeN limit we always have the standard universal ↵-attractor prediction, independently

of all other parameters of the model,

ns = 1� 2

N
. (5.11)

However, the range accessible to observations is limited, N . 50� 60. For

e�sc � �2V0N

Vup + V0
, (5.12)

one has, in accordance with (5.8),

e�sN ⇡ e�sc , (5.13)

– 11 –

By increasing the uplifting term                                 one can increase V 
without changing any derivatives of V. In the large uplift limit, we have a 
universal attractor prediction ns = 1 for any V growing at large f
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Vuplift = M4/4�

Figure 1: Hybrid inflation potential (3.1) for m = 0.2,M = 1,� = 0.5, g = 0.8.

The e↵ective mass squared of the field � at � = 0 is equal to

V�,�(� = 0) = �M2 + g2�2 . (3.2)

For � > �c = M/g the only minimum of the e↵ective potential V (�,�) with respect to � is at

� = 0. The curvature of the e↵ective potential in the �-direction is much greater than in the

�-direction. Thus we expect that at the first stages of expansion of the Universe the field �

rolled down to � = 0, whereas the field � could remain large for a much longer time.

The potential at � = 0 can be written as

V (� = 0,�) = Vup +
m2

2
�2 , (3.3)

where the uplifting potential is

Vup =
M4

4�
. (3.4)

At the moment when the inflaton field � becomes smaller than �c = M/g, the phase

transition with the symmetry breaking occurs. For a proper choice of parameters, this phase

transition occurs very fast, and inflation abruptly ends [1, 2]. However, there are some

situations where inflation may continue for a while in the process of spontaneous symmetry

breaking, which may lead to production of primordial black holes (PBHs) [29].

Unfortunately, these models are disfavored by the data in most of its parameter space: at
m2

2 �2 & Vup the tensor-to-scalar ratio is too high, whereas at m2

2 �2 ⌧ Vup the spectral index

ns is too high: ns > 1 [30].

Once we switch to ↵-attractor version of hybrid inflation, the first of these problems

disappears. As we will show later, the second problem may also disappear: in the large N

limit these models lead to the standard ↵-attractor predictions (1.1), (1.3). The issue we need

to carefully examine is whether N ⇠ 60 is large enough to be described by the large N limit.

– 6 –

For s = o, it is just the quadratic potential uplifted by M4/4l



Just as in all a-attractors, we have a universal large N attractor prediction 

3.2 Hybrid ↵-attractors

Here we will explore what may happen if we generalize the hybrid inflation model (3.1) by

embedding it in the context of exponential ↵-attractors [3].1

Lp
�g

=
R

2
� (@µ�)2

2
�
1� �2

6↵

�2 � (@µ�)2

2
�
1� �2

6�

�2 � V (�,�) . (3.5)

Upon a transformation to canonical variables ' and �, the hybrid inflation potential becomes

V (�,') =
1

4�
(M2 � 6�� tanh2

�p
6�

)2 + 3m2↵ tanh2
'p
6↵

+ 18g2↵� tanh2
'p
6↵

tanh2
�p
6�

. (3.6)

The shape of this potential for some particular values of parameters is shown in Fig. 2.

Figure 2: Hybrid inflation potential for the model (3.6) with m = 0.2,M = 1,� = 0.5, g = 0.8,↵ = 1,� = 1.

It looks very similar to the original potential shown in Fig. 1, but the potential along the valley � = 0 is much

more flat.

The curvature of the potential in the � direction at � = 0 coincides with the curvature

with respect to � at � = 0:

V�,�(� = 0) = V�,�(� = 0) = �M2 + g2�2 = �M2 + 6↵ g2 tanh2
'p
6↵

. (3.7)

For � > �c = M/g, this curvature is positive, and the inflationary trajectory with � = 0

remains stable until field � rolls below the critical point

�c =
p
6↵ tanh

'cp
6↵

= M/g . (3.8)

If the last 60 e-foldings of inflation occur when |�| ⌧
p
6↵, |�| ⌧

p
6�, then most

cosmological consequences of this model will coincide with those of the original version of

1
We will discuss polynomial attractors [10] in section 9.
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are no longer satisfied. This assumption is natural indeed, but one can find, or engineer, some

models where it may be violated.

As we already mentioned in the previous section, the simplest possibility to do it is to

arrange for a second stage of inflation with duration �N . This modification decreases ns. For

exponential ↵-attractors (1.1) this decrease is not particularly desirable.

However, there is yet another possibility, which may allow many interesting variations of

the main theme. One may consider multi-field models, where the single-field inflation regime

ends prematurely because of the instability of the inflationary trajectory, or because of its

sharp turn.

The simplest well-known example is provided by hybrid inflation [1, 2]. In this scenario,

inflation driven by the field � is terminated because of the tachyonic waterfall instability

with spontaneous generation of the second field �. This mechanism involves two ingredients,

each of which allow to control (increase) ns. First of all, this scenario involves uplift of an

inflationary potential by some potential depending on �. This uplift disappears after the

waterfall instability, but during inflation with � > �c the uplift increases V while keeping V 0

intact. This decreases slow-roll parameters and increases ns for � > �c. Secondly, one can

control the value of �c by a proper choice of parameters. As a result, one can also control

the value of the field �N corresponding to N e-foldings prior to termination of inflation. This

provides an additional tool to control ns.

In this paper we will consider hybrid models of ↵-attractors and explain how both of

these mechanisms a↵ect inflationary predictions for ns and r. To avoid misunderstandings,

we should emphasize that hybrid ↵-attractors are more complicated than the single-field

↵-attractors. However, realistic inflationary models often involve more than one scalar field.

As we will see, investigation of their ↵-attractor versions can be quite instructive.

3 Hybrid inflation

3.1 Original hybrid inflation model

Let us first consider the simplest hybrid inflation model [1, 2]. The e↵ective potential of this

model is given by

V (�,�) =
1

4�
(M2 � ��2)2 +

m2

2
�2 +

g2

2
�2�2 . (3.1)

To illustrate the main features of this potential, we show it in Fig. 1.
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Then the condition V0
↵ ⇠ 10�10 reads m ⇠ 0.6 ⇥ 10�5. It is this simplest model that is shown

by the prominent vertical yellow band on Fig. 8 of the Planck2018 data release [2].

To illustrate advantages of this class of models, we show in Fig. 3 predictions of the

models with monomial potentials �2n after the modification of the kinetic term shown in (2.1).

At large ↵, predictions of all of these models coincide with the predictions shown in Fig. 1,

and these models are ruled out, but at smaller ↵ they all run towards the dark blue area

favored by the latest BICEP/Keck data release. Fig. 3 illustrates the main advantage of the

cosmological attractors: Their predictions for ns and r coincide in the small ↵ limit, nearly

independently of the choice of the potential V (�):

ns = 1 � 2

Ne
, r =

12↵

N2
e

. (2.5)

These models are compatible with the presently available observational data for su�ciently

small ↵.

2.2 E-models

The second family of ↵-attractors called E-models is given by

Lp
�g

=
R

2
� 3↵

4

(@⇢)2

⇢2
� V (⇢) . (2.6)

As before, one can go to canonical variables, ⇢ = e
�
q

2
3↵'

, which yields

Lp
�g

=
R

2
� 1

2
(@')2 � V (e

�
q

2
3↵'

). (2.7)

The simplest example is provided by V (⇢) = V0(1 � ⇢)2. In the canonical variables it is given

by

V = V0

⇣
1 � e

�
q

2
3↵'

⌘2
. (2.8)

For the particular case ↵ = 1 this potential coincides with the potential of the Starobinsky

model [13]. In the small ↵ limit the predictions of the E-models coincide with the predictions

of the T-models (2.5).

Fig. 4 shows a combination of predictions of the simplest T-model (2.4) and the simplest

E-model (2.8). Predictions of both of these models at large ↵ coincide with the predictions

of the model �2, and then go down into the blue area with decreasing ↵. T-model band

goes straight, E-model band first slightly bends to the right, to larger values of ns, but later

reaches the same attractor value as in the T-model. Their predictions are consistent with the

Planck/BICEP/Keck bound r < 0.036 for ↵ . 7. Note that both models can describe any

value of r ⌧ 1, all the way down to r = 0.1

1An opposite statement made in the comment on the BICEP/Keck results in [14] is based on discarding

predictions of ↵-attractors for ↵ < 1.
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However, if uplift is very large, the large N limit is reached only for N >> 60.  
Then for N ~ 60 one has a hybrid attractor large uplift prediction ns = 1.  

The value of N where the large N limit is reached depends on the relation 
between Vuplift and m2. As a result, by changing Vuplift one can obtain any 
value of ns in the range between the two attractor predictions
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< ns < 1

Hybrid attractors are more complicated than the simplest a-attractors 
discussed in this talk. However, there are some situations where flexibility of 
theoretical models may be desirable.
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3.2 Hybrid ↵-attractors

Here we will explore what may happen if we generalize the hybrid inflation model (3.1) by

embedding it in the context of exponential ↵-attractors [3].1

Lp
�g

=
R

2
� (@µ�)2

2
�
1� �2

6↵

�2 � (@µ�)2

2
�
1� �2

6�

�2 � V (�,�) . (3.5)

Upon a transformation to canonical variables ' and �, the hybrid inflation potential becomes

V (�,') =
1

4�
(M2 � 6�� tanh2

�p
6�

)2 + 3m2↵ tanh2
'p
6↵

+ 18g2↵� tanh2
'p
6↵

tanh2
�p
6�

. (3.6)

The shape of this potential for some particular values of parameters is shown in Fig. 2.

Figure 2: Hybrid inflation potential for the model (3.6) with m = 0.2,M = 1,� = 0.5, g = 0.8,↵ = 1,� = 1.

It looks very similar to the original potential shown in Fig. 1, but the potential along the valley � = 0 is much

more flat.

The curvature of the potential in the � direction at � = 0 coincides with the curvature

with respect to � at � = 0:

V�,�(� = 0) = V�,�(� = 0) = �M2 + g2�2 = �M2 + 6↵ g2 tanh2
'p
6↵

. (3.7)

For � > �c = M/g, this curvature is positive, and the inflationary trajectory with � = 0

remains stable until field � rolls below the critical point

�c =
p
6↵ tanh

'cp
6↵

= M/g . (3.8)

If the last 60 e-foldings of inflation occur when |�| ⌧
p
6↵, |�| ⌧

p
6�, then most

cosmological consequences of this model will coincide with those of the original version of

1
We will discuss polynomial attractors [10] in section 9.
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problem of initial conditions in our model in Section 3. In Section 4, we will make a step back

and study the perturbations in the �-sector of hybrid inflation, temporarily ignoring the field

'. As we will see, this will help to understand the origin of the high peak of perturbations

produced in various versions of the hybrid inflation scenario. In Section 5, we explain in

details how the model parameters control distinct properties of the bump in the PPS and

discuss the constraints from Planck/BICEP/Keck Array data. Then, in Section 6, we describe

the gravitational wave phenomenology of our model providing clear targets for gravitational

wave interferometers and discussing how to interpret a future detection of a SGWB in terms

of our model parameters. In Section 7 we will generalize our results by considering models

based on polynomial attractors or KKLTI potentials [54]. We conclude in Section 8. In the

Appendix A, we provide an implementation of our model in SUGRA constructions. We set

Mpl = 1 throughout our analysis. The numerical results in this paper are obtained using

a multifield extension of the BINGO code [55], presented in [56], which is however not yet

public.

2 Hybrid ↵-attractors

Before describing the hybrid attractors [35], we will represent the original model (1.1), together

with a small additional linear term µ3�, in a slightly di↵erent form, which is more convenient

for our investigation1:

V (�,�) = M2


(�2

� �2

0
)2

4�2

0

+
m̃2

2
�2 +

g̃2

2
�2�2 + d�

�
. (2.1)

Here m̃ = m/M , g̃ = g/M , and d = µ
3

M2 . In this paper we will consider models with �0 = O(1)

and µ ⇠ M ⇠ m ⇠ g ⇠ 10�5, with masses given in the Planck mass units Mpl = 1. In that

case m̃ ⇠ g̃ = O(1), whereas the linear term can be very small, with d ⇠ 10�5. Therefore it

does not a↵ect early stages of inflation. However, as we will see, it plays an important role in

the theory of the PBH production.

Note that the linear term slightly breaks the symmetry � ! �� of the original hybrid

inflation scenario. This symmetry was introduced in [2, 3] for simplicity, it is not a fundamental

requirement, and in our context there is no gauge symmetry protecting it. Thus one may

argue that it is technically natural. Its possible interpretation in the context of supergravity

is discussed in the Appendix A.

In the original version of the hybrid inflation [2, 3], both � and � are canonically normalized.

To present the simplest ↵-attractor generalization of the original model, it is su�cient to

modify the kinetic term of the field �:

L
p
�g

=
R

2
�

(@µ�)2

2
�
1� �2

6↵

�
2
�

(@µ�)2

2
� V (�,�) . (2.2)

1One should also add a tiny constant term �V ⇡ �µ
3
�0 to the potential (2.1) to ensure nearly vanishing

value of the cosmological constant, but it can be ignored in the discussion of inflation.
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One may also make a similar generalization of the kinetic term of the field � [35], but it is not

required in the context of our investigation. The geometric interpretation of this modification

can be found in [57] and its supergravity implementation for hybrid attractors is given in [35]

and in the Appendix A of our paper.

Upon a transformation to the canonical variable ', the hybrid inflation potential becomes

V (�,') = M2


(�2

� �2

0
)2

4�2

0

+ 3↵(m̃2 + g̃2�2) tanh2
'

p
6↵

+ d�

�
. (2.3)

The potential at � = 0 is given by

V (') = M2

✓
�2

0

4
+ 3m̃2↵ tanh2

'
p
6↵

◆
. (2.4)

This is the simplest ↵-attractor potential [50–54], uplifted by the term Vuplift =
M

2
�
2
0

4
. Another

important parameter is the mass squared of the field � at � = 0,

M2

� = V�,�(� = 0) = M2

✓
�1 + 6↵g̃2 tanh2

'
p
6↵

◆
. (2.5)

The last term in this equation stabilizes the inflationary trajectory � = 0 at large '.

In this paper, we will consider the case 6↵g̃2 > 1. In that case M2
� > 0 at su�ciently

large ' > 'c, where

tanh2
'c
p
6↵

=
1

6↵g̃2
. (2.6)

During inflation, when the field ' decreases below 'c, the mass squared of the field � becomes

negative and the tachyonic instability with generation of the scalar field � develops. At ' = 0

this mass has its largest absolute value, M2
�(' = 0) = �M2.

The potential (2.3) for some particular values of parameters is shown in Fig. 1.

It is instructive to compare M2
�(' = 0) = �M2 with the Hubble constant at ' = 0,

H0 =

r
Vuplift

3
=

M�0

2
p
3

. (2.7)

The main regime explored in the original formulation of the hybrid inflation scenario was

�0 ⌧ 1 [2, 3], in which case the absolute value of the tachyonic mass M� becomes much larger

than the Hubble constant as soon as � becomes smaller than �c. This leads to an abrupt

termination of inflation at � ⇡ �c [2, 3, 35].

In this paper, following [1], we will be interested in the opposite regime �0 & 2
p
3. In this

regime |M�(� = 0)| . H for all ' < � . 'c. This mass vanishes when the field ' is close to

'c. As a result, the tachyonic instability is very slow to develop. Importantly, at any nonzero

value of ', its contribution to the equation of motion of the field � is only slowing it down,
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At the top of the Higgs potential

but then it turns and rolls down along the valley towards very large � with V (�) < 0, and the

universe collapses. It is possible to solve this problem by a proper modification of the potential

used in [44] at � > �c. Fortunately, this issue does not appear in the original version of the

hybrid inflation scenario [2, 3], and in the hybrid attractor models described in our paper.

4 Evolution of the field � in the single-field approximation

As we have argued in section 2, one can learn quite a lot about the waterfall stage of inflation

in hybrid inflation with �0 & 2
p
3 by ignoring the field ' and investigating the single field

model with

V (�) =
M2

4�2

0

(�2
� �2

0)
2 . (4.1)

Many of our results will be valid for any single field inflationary potential; they will be based

on the general theory of eternal inflation [63–66] which we will remind here following the

general theory of eternal inflation developed in [66].

In the slow-roll approximation, ignoring quantum fluctuations, during each e-folding the

scalar field decreases by

�� =
V�

V
. (4.2)

where V� = @V

@�
. During that time the volume of each inflationary domain of the horizon size

O(H�1) increases e3 ⇠ 20 times, so we get ⇠ 20 independent horizon-size inflationary domains

where the average value of the field � decreases by �� = V�/V .

However, during the same time, inflationary quantum fluctuations may increase the value

of � by

�� ⇠
H

2⇡
=

p
V

2
p
3⇡

. (4.3)

If �� > |��|, these quantum jumps may bring half of the 20 horizon-size domain uphill, back

to where we started. This leads to the regime of eternal inflation [66]. Remarkably, as one can

easily see, the condition �� < |��| required for the absence of eternal inflation is equivalent

to the condition that the amplitude of perturbations is smaller than O(1):

As =
V 3

12⇡2V 2
�

. 1. (4.4)

This is not a coincidence, since eternal inflation would imply that inflation continues in some

parts of the universe, whereas in many other parts of the universe inflation is over and the

energy density rapidly becomes small.

In the context of the model (4.1), the criterion (4.4) is always violated at the top of the

potential where V�⇠ 0. However, quantum fluctuations in each horizon size domain during one

e-folding of inflation shift the field � from � = 0 by �� ⇠
H

2⇡
. Thus one can use this estimate
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V (�) = M2


(�2 � �2

0)
2

4�2
0

+ d�

�

< 1     if 

To give a particular example, for V ⇠ 10�10 this condition implies that µ3 & 10�16. This

means that by adding a tiny term 10�16� to the potential one can avoid the problems discussed

above. The corresponding constraint on d = µ3/M2 is

d & M�3

0

24
p
3⇡

. (4.9)

As we mentioned in section 3, the term d� leads to an additional modification of this scenario.

In its absence, the field � is rolling along the minimum of the potential at � = 0, which is why

in our previous estimates of the amplitude of the perturbations we used � = 0 as a starting

point of the inflationary waterfall. However, the term d� pushes the field � slightly away

from � = 0. This happens well before ' becomes smaller than 'c, see (3.4), (3.3). Thus,

even though the linear term d� is very small, it pushes the field � away from the ridge of the

potential and from its initial equilibrium state (3.3). This additionally decreases the height

of the peak of the perturbations. On the other hand, during the several e-foldings near 'c

the average amplitude of the perturbations may grow slightly above H

2⇡
, by a factor O(1).

Therefore it would be interesting to perform a more detailed investigation of stochastic e↵ects

during inflation, following [72–83]. However, we believe that the simple estimates (4.8), (4.9)

give a good estimate of the range of validity of the perturbative analysis to be used in this

paper.

Thus we see that by adding the term d� to the potential, one can control the height of

the peak of the perturbations. A detailed analysis of the perturbations produced in the full

two-field scenario is rather sophisticated and will be given in the next section. Interestingly, we

will find that the spectrum of the perturbations produced at ' su�ciently far below the critical

point 'c is well described by the theory of perturbations in the single-field model described in

this section, while around the critical point 'c multifield e↵ects play a non-negligible role.

5 Hybrid exponential attractors and the spectrum of perturbations

In this section we will perform a full numerical investigation of perturbations in hybrid

attractors. For illustration, we will consider the exponential attractor model in Eq. (2.1) and

consider the following combination of parameters as a benchmark

M = 1.47⇥ 10�5 , ↵ = 1 , g̃ = 0.8 , m̃ = 0.3 , �0 = 2.5 , d = �5⇥ 10�6 , (5.1)

which we denote as the baseline parameters and explore how changing each parameter a↵ects

the shape and amplitude of the bump in the primordial power spectrum that is produced

at small scales. Note that we always set the field � initially at rest at �i = 0 and we adopt

the initial condition 'i = 3.4, which corresponds to 83 e-folds of inflation. The trajectory is

shown in the left panel of Fig. 4. Our baseline parameters in Eq. (5.1) are chosen so that

ln 1010As = 3.043 , ns = 0.9618 , ↵s = 3.1⇥ 10�6 , r
0.002Mpc

�1 = 0.01 , (5.2)
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The linear term allows to avoid eternal hybrid inflation and superheavy 
topological defects. By a proper choice of  d one can dial perturbations 
with a peak of any desirable height with the wavelength controlled by d, 
c0, and other parameters. 



A detailed theory of perturbations generated during the two-field 
evolution is quite complicated, but the qualitative conclusion obtained 
above remains valid.

Figure 6: Variation of model parameters and their imprints on the PPS. For each case, we also plot the

evolution of m2
e↵, iso/H

2 and ⌘
2
?/H

2. [Top-left] Variation of d, which controls the height of the peak. [Top-right]

Variation of �0, which controls the location of the peak. [Bottom-left] Variation of g̃, which controls the width

of the peak. [Bottom-right] Variation of g̃ for the parameters in (5.3). To highlight that the last case is not

compatible with Planck observations, we plot it on top of a red background (ns is redder in that case). We also

note that the x-scale axes on the bottom Nend �N correspond to the time at which the wavenumbers on the

top axes cross the horizon i.e. k = a(Nend �N)H(Nend �N).

redshift is less e�cient, and one may expect MPBH between the two limits discussed above

[10, 17].

To give a particular example, consider the universe which was radiation dominated soon

after the end of inflation. In this case one may use the expression that relates the scale of a
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The amplitude of perturbations and position of the peak as a function of the 
linear term ~ d.
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where k can be any (integer or not) positive constant. The simplest examples of such potentials

are given by

V = V0

'k

'k + ↵k
, (7.3)

They were called polynomial attractors [54]. Such potentials may appear in several di↵erent

contexts, such as KKLTI inflation [108], pole inflation [109], and also as a special version of

↵-attractors [54].

In all of these cases, at ↵ ⌧ 1 in the large N limit these potentials have universal attractor

predictions, independently of other details of the potential indicated by the ellipsis ... in

Eq. (7.2). In particular, the spectral index ns depends only on k [110]:

ns = 1�
2

N

k + 1

k + 2
. (7.4)

Here we will consider the hybrid inflation scenario where instead of the potential m
2

2
�2

we will use a potential V = m
2

2

↵
2
'
2

'2+↵2 . At '2
⌧ ↵2 this potential is given by the familiar

expression m
2

2
'2, but at '2

� ↵2 it approaches a plateau V0 =
m

2
↵
2

2
.

Ignoring, for simplicity, the hybrid inflation uplifting, these models have universal predic-

tions [110]

ns,KKLTI = 1�
3

2N
, r =

p
2↵

N3/2
. (7.5)

The corresponding hybrid inflation potential based on this particular version of the

polynomial attractor is given by

Vpoly(�,') = M2


(�2

� �2

0
)2

4�2

0

+
m̃2

2

↵2'2

'2 + ↵2
+

g̃2

2
'2�2 + d�

�
. (7.6)

In Fig. 12, we provide some examples of the evolution of the field ' in this model, together

with the associated power spectra. We fix the following parameters ↵ = 0.05, � = 1/�2

0
= 0.3

and M is chosen to match the COBE normalization, as usual. The small value of ↵ is chosen

here to take advantage of the attractor regime of polynomial attractors [109]. The other

parameters are varied according the following table. As discussed in the previous Section,

the number of e-folds that is used in Eq. (7.5) is NKKLTI = N⇤ ��N = 55��N , where we

assume N⇤ = 55.

d m̃↵ g̃ �N ns,KKLTI ns, num

Example 1 �2⇥ 10�7 0.7 2 9.43 0.9671 0.9670

Example 2 �10�7 0.3 6 11.00 0.9659 0.9652

Example 3 �6⇥ 10�8 0.05 8 8.91 0.9674 0.9662

We can see that the main features of the peak in the power spectrum are essentially

the same as in the exponential hybrid attractor models. The main di↵erence is that the
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here to take advantage of the attractor regime of polynomial attractors [109]. The other

parameters are varied according the following table. As discussed in the previous Section,

the number of e-folds that is used in Eq. (7.5) is NKKLTI = N⇤ ��N = 55��N , where we

assume N⇤ = 55.

d m̃↵ g̃ �N ns,KKLTI ns, num

Example 1 �2⇥ 10�7 0.7 2 9.43 0.9671 0.9670

Example 2 �10�7 0.3 6 11.00 0.9659 0.9652

Example 3 �6⇥ 10�8 0.05 8 8.91 0.9674 0.9662

We can see that the main features of the peak in the power spectrum are essentially

the same as in the exponential hybrid attractor models. The main di↵erence is that the
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Figure 12: [Left] Evolution of the field ' in the hybrid polynomial attractors model. [Right] Primordial

power spectra. The parameters for each example are reported in the Table in the main text.

predictions at large scales follow a di↵erent attractor. Like in the previous Section, we observe

that increasing m̃↵ brings the analytical predictions into closer agreement with the numerical

results for ns. However, unlike in the case of exponential attractors, here this allows us to take

full advantage of the attractor nature of the model. Indeed, since now ns = 1� 3/2(N⇤��N),

the attractor predictions are consistent with Planck data even for the value of �N ⇠ 10

needed to get a phenomenologically interesting peak at small scales in this model. Therefore

in this context we do not need to rely on uplifting to shift the attractor prediction upwards to

larger values of ns. However, we can use this mechanism if we want to consider models with

larger values of �N , or if we want to increase ns even further.

8 Discussion

Models of inflation producing a large amplitude peak at small scales are the subject of a very

active field of research, primarily because they potentially lead to the production of PBHs and

a SGWB testable with future gravitational wave facilities. Historically, hybrid inflation [2, 3]

was one of the first models where such an amplification of power was considered [1], see also

[111–118]. In this paper, we investigated the possibility to generate perturbations with a very

high peak in the spectrum in its recently developed ↵-attractor generalization [35] of the

hybrid inflation scenario and discussed its consequences for PBH and SGWB production.

This scenario describes an inflaton field ' interacting with a Higgs-type field � in such a

way that the latter becomes tachyonic when ' becomes smaller than some critical value 'c.

In the simplest cases, the absolute value of the tachyonic mass of the field � becomes much

greater than the Hubble constant H at ' < 'c. Is such cases, the field � falls down to the

minimum of the potential at � = �0 and inflation abruptly ends at ' ⇡ 'c [2, 3].
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The models discussed above have been formulated in supergravity 
context. They allow many interesting generalizations, not only for 
inflation but also for the theory of dark energy.

It is possible to avoid adding the linear term d c if, for example, 
instead of a single field c one considers a theory of several fields ci 
and controls the amplitude of perturbations by the symmetry 
breaking parameter c0 < 1.

Our main goal here was to show that one can construct hybrid 
inflation models which fit Planck data and can produce 
perturbations with a very high peak, which may either result in PBH 
production, or to the stochastic gravitational wave background.


