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Introduction




Introduction-1-: A brief sketch of the universe

e The universe is homogeneous and isotropic on large scales
(cosmological principle)
e The matter content of the universe:

e Standard matter
e Dark matter
e Something that induce the late-time acceleration of the

Universe

e The acceleration of the universe is backed by several
measurments: H(z), Snela, BAO, CMB, LSS (matter power

spectrum, growth function)...



Introduction-2-

e The effective equation of state of whatever is driving the current
speed up of the universe is roughly -1. For example, for a wCDM
model with w constant and k =0, Planck (TT, TE, EE+lensing) +
ext(BAO,HO0,JLA) results implies w is very close to —1

e Such an acceleration could be due

e A new component of the energy budget of the universe: dark energy;
i.e. it could be A, quintessence or of a phantom(-like/effective)
nature

e A change on the behaviour of gravity on the largest scale. No new
component on the budget of the universe but rather simply GR

modifies its behaviour, within a metric, Palatini (affine metric) ....



Late-time acceleration of the Universe within
GR: dark energy with a constant EoS




Constant equation of state for DE: background-1-

e Cosmic acceleration:

4G

B
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Observation indicates that for wge ~ —1 where wge = pae/pde-

Therefore, as soon as DE starts dominating the Universe starts
accelerating, i.e. 3 > 0.

Simplest cases ACDM or wCDM.



Constant equation of state for DE: background-2-

e State finders approach (sahni, saini
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and Starobinsky JETP Lett. [arXiv:astro-ph/0201498])
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Where A,, = a"/(aH"),
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e State finders parameters:
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Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]



Constant equation of state for DE: perturbations-1-

0.100]

0.010]

1

logyg /ag

Example of the evolution of the
perturbations: k = 1073 Mpc~!
ACDM model: ¢, vanishes
asymptotically

Phantom model: ®, also evolves
towards a constant in the far future
but a change of sign occurs roughly
at logyy a/ag ~ 2.33, corresponding
to 8.84 x 10%° years in the future.
A dashed line indicates negative
values of ¢

Quintessence model: ®, evolves
towards a constant in the far future
without changing sign

Albarran, B.L. and Morais, EPJC 2018 [arXiv:1706.01484]



Constant equation of state for DE: perturbations-2-

e What about fog for the three different DE models?
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cvuluuun of the relative differences of o for each model with regard to ACDM (v = ~1). Afor is positive in the phantom case and negative in
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Late-time acceleration of the Universe within
GR and with a phantom fluid




Late-time acceleration of the Universe within
GR and with a phantom fluid

The models



The models

e We are going to focus on the genuinely phantom matter. i.e. when
the Equation of State satisfies w < —1.

e The phantom matter violates the Null energy condition. In
consequence, the rest of the energy conditions are violated.

Null energy condition = p+ p > 0.

e Weak energy condition =p+p >0, p > 0.
e Dominant energy condition = p > |p|.
e Strong energy condition = p+p >0, 3p+p > 0.

e For example, a suitable way to write the Equation of State of a
phantom fluid is

p=—p— Cp°,

where C is a positive constant and « is a real number. We are going
to focus on the cases « = 1,1/2,0.



Genuine phantom m BR, LR and LSBR

e The DE content can be described for example with a perfect fluid or
a scalar field

Event EoS for a perfect fluid Potential for a scalar field
BR Pd = Wdpd V(¢) = Cpe??

LR pa = —p — By\/pa V(¢) = Cr¢* + Di¢?
LSBR | pa = —pa — A/3 V (¢) = Cis¢® + Dis

Where wy < —1, the parameters A and B are positive and Cp,, Cj;, Dy,
Cis and Dy, are constants.

e The lower is the power on ¢ of V (¢), the smoother is the abrupt
event.

(1) A.A. Starobinsky. astro-ph 9912054; R.R. Cadwell astro-ph 9908168; Cadwell et al. astro-ph/0301273
(2) H. Stefanti¢. astro-ph 0411630; S. Nojiri, S. Odintsov and S. Tsujikawa. hep-th/0501025

(3) M. Bouhmadi-Lépez , A. Errahmani, P. Martin-Moruno, T. Ouali and Y. Tavakoli. arXiv:1407.2446
(4) M. P. Dabrowski, C. Kiefer and B. Sandhéfer. hep-th/0605229



Phantom ener Should we be afraid?

e Evolution of the scale factor for different models vs cosmic time.
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Late-time singularities

DE might induce a future cosmic singularity Asymptotic evolution of the scale factor

Some of the cosmological parameters:

t —— Cosmic time
a —— Scale factor (relative size)
H —» Hubble parameter (growth rate)

H » Time derivative of H . LR
3} BR
EOOnOnEE ||
= LSBR
Big Bang 0 0 o o © ©
Desitter, =~ o Hg 0 0 ; w©
Big Rip t; ®© © o py ACDM
N
LR © o o o o 7 w©
LSBR ® o o H 0 =
BigFreeze t; a; ® © =2 ©
Sudden.S. t; a, Hy, © o ~
Type IV ts |las | Hs | Hg © o E] & 7 % -

Time (107 years)

Bouhmadi-Lépez, Kiefer, Martin-Moruno, arXiv:1904.01836 [gr-qc] (review published in GRG)
Borislavov Vasilev, Bouhmadi-Lépez, Martin-Moruno, arxiv: arXiv:2106.12050 (review published in Universe) 11



Late-time acceleration of the Universe within
GR and with a phantom fluid

Observational data and constraints



Observational data

e The Pantheon compilation: 1048 SNela dataset 0.01 < z < 2.26

e The power spectrum of CMB affects crucially the physics, from the
decoupling epoch till today. Effects are mainly quantified by the
acoustic scale /, and the shift parameter R komatsu et 2008

e The BAO peaks present in the matter power spectrum can be used
to determine the Hubble parameter H(z) and the angular diameter
distance Da(z)

e H(z) data

12



Model fitted

e BR model: pg = wypq

E(a)?> = Qra* + Qma 3 + Qqa3(+wa),

1
e LR model: pg = — (pd + Bpé)

2
[y

E%(a) = Qa * + Qua 3+ Qq 1+§ " in(a) | .
2V Qq

e LSBR model: pg = — (pa + )

QS r
E%(a) = Qa4+ Quma 3 + Qq <1 - # |n(a)> ‘
d

13



BR Model

=095
- -1.
s
-1.05
~L1
0.3 0.31 0.32 0.33
2.3 23
C? 225 ™ 225
~
=
a
[=) \
— 2.2 9 ) 2.2
2.1 2.15
0.3 0.31 0.32 0.33 -1.1 -1.05 -1 —0.95
1. 1 1
0.8 N 0.8 - 0.8 -
<
0.6 0.6 0.6
0.4 04 0.4
0.31 0.32 0.33 ~11 -1.05 -1 =095 215 22 2.25 23
wa 102020,

Qm

Bouali, Albarran, Bouhmadi-Lépez and Ouali, arXiv:1905.07304 [astro-ph.CO]. Published in Physics of the Dark Universe



LR Model
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LSBR Model
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Comparison with LCDM

Model Par Best fit Mean e xR AIC. AAIC.

O 0.31834970 00715001 03183470 000 ooy 1047.42 0.957422 1053.441953 0
ACDM & 0.69814+0.010811 0.69860275-0451787

Qoh? 0.02221870ENTE  0.02222027 000012

Qum  0.31717370 0031500 0.3173277 ) 00aisos  1047.51 0.958380 1055.54663 2.104677
BROw, —LO2mSTONONE —LoasTathoiian

ho 0691013500 0.691523 55GTEN

Qo 0.0221218 00T 0.0221287 D honToEe
Qn  0.3171987 5027080 03177057 0 000151 1047.53 0.958398 105556663 2.124677
LR 0n 0.000445721 43000419128 0.0007638244 000041832

0.000416359

0.0494111 0.0493315
h 0.694604°0 10i1 11 0.6885847 0 0 losa 12

Quh® 0.022129575000190583  0.02210287 500015373

Qu 03171157, goooo 0.3161447 7 00253500 1047.56 0.958426 1055.59663 2.154677
LSBR Quw  0.05002617075:5013  0.02994247 50733558

ho 069570570 0531501 0.70196250 0151408

QU 002038500 002028 g Izt

Table III. Summary of the best fit and the mean values of the cosmological parameters.
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Late-time acceleration of the Universe within
GR and with a phantom fluid

A perturbative approach: GR and phantom fluids



Our approach

e We start considering that the late-time acceleration of the universe
is described by a dark energy component effectively encapsulated
within a perfect fluid with energy density ps and pressure py. On
this setup, we consider two simple scenario:

e A constant equation of state for DE

e A DE in an effective and genuinely phantom DE universe. The
reason of this second choice will become clear after considering the
first case.

e Of course, on top of this we invoke a dark matter component.

Given that to get the matter power spectrum, we start our numerical
integration since the radiation dominated epoch, we will consider as
radiation as well on our model.

18



Cosmological perturbations: GR and for the late Universe-1

e We worked on the Newtonian gauge and carried the first order
perturbations considering DM, DE and radiation on GR. Radiation
was included because our numerical integrations start from well
inside the radiation dominated epoch (to get the matter power
spectrum)

e We assumed initial adiabatic conditions for the different fractional
energy density perturbations

e The total fractional energy density is fixed by Planck measurments;
i.e. through As and ng

e The speed of sound for DE:

e The pressure perturbation of DE reads:
0pd = c20pa — 3H (1 + wy) (cfd — cfd) paVd, where ¢2, = P4

, opd Folfo
Py

Pq
e Given that cZ, is negative, we can end up with a problem (this is not

and ¢, =

intrisic to phantom matter as it can happen for example with fluids
with a negative constant equation of state larger than -1)
e We choose ¢ = 1 as a phenomenological parameter 19



Cosmological perturbations: GR and for the late Universe-3

e Adiabatic conditions:

8 5d,ini -~ 8

76r,ini - 6m,ini - (S 76ini
4 1+ W ini 4
. = = —~ 6ini
r,ini — Ym,ini — Vd,ini ~ A
ini

e Initial conditions for ¢ are fixed through the amplitude and spectral
index of the primordial inflationary power spectrum:
As =2.143 x 107°, ng = 0.9681 and k. = 0.05 Mpc~! (Planck
values): ®;,; = %’T 2A, (%)ns_l k—3/2

o Well inside the radiation era: ®;,; ~ —%(ﬁot’ini and
DBini & —2Hini Viot, ini

e We choose c2, = 1 as a phenomenological parameter

e The parameters of the models will be fixed through the fitting we
did previously.

20



Results: DM perturbations and the gravitational potential

[6m |

/0,

ki = 3.33 x 10~*h Mpc?, ks = 1.02 x 1072h Mpc !,
ky = 1.04 x 10~*h Mpc?, ks = 3.19 x 1072h Mpc ™!,
ks = 3.26 x 10~3h Mpc !, ke = 1.00 x 10~*h Mpc .

21



Results: DE perturbations

. k=k; | k=k; | . k=k;
k= | o ks | k=ks

ki = 3.33 x 10~*h Mpc !, ks = 1.02 x 1072h Mpc ™!,

k, = 1.04 x 10~*h Mpc !, ks = 3.19 x 10~%h Mpc !,

ks = 3.26 x 10~3h Mpc}, ke = 1.00 x 10~*h Mpc .

22



Results: a closer look at the gravitational potential

0/,

/0,

ki = 3.33 x 10~*h Mpc ™}, ks = 1.02 x 1072h Mpc ™!,
k, = 1.04 x 10~*h Mpc !, ks = 3.19 x 10~%h Mpc !,
ks = 3.26 x 10~3h Mpc}, ke = 1.00 x 10~*h Mpc .

23



Results: The evolution of fog (growth rate)-1-
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Effect of the speed of sound, C2,, on DE perturbations
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Albarran, Bouhmadi-Lépez and Marto, arXiv:2011.08222 [gr-qc.CO]. Published in European Physical Journal C.
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Effect of the speed of sound, C2,, on the gravitational potential-

1-
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Effect of the speed of sound, C2,, on the gravitational potential-
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Late-time acceleration of the Universe within
GR and with a phantom fluid

DE and DM models with interactions



DE and DM models with interaction

fMotivations

e Solving the coincidence problem.

e Check if an interaction between DE and DM could statistically
improve the previous models.

e Check if the interaction could attenuate or modify the nature of
future cosmological events induced by the former models
corresponding to BR, LR and LSBR.

e Check whether the previous models A, B and C might respond
differently to the interaction, as they exhibited very similar behaviour
both at the background level and at the perturbative level.

pm ot 3Hpm - *Q,
pa+3H(1 4+ wa)pa = Q.

where

Q = AHpq 28



IBR Model-1-
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IBR Model-2-

Model Par Best fit Mean
Q. 031066470 gz 031219 0 gugr11

BR wi -LOBeSTUBNS 10372870080
A 0.0168888 G015 0.01935227G01550
h 0682033750053 068136575 00635006
Q,h

£0.000166489
0.0224867 "5 000100480

+0.000166426
0.0224764 (00100400




ILR Model-1-
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ILR Model-2-

Model Par Best fit Mean
0. 0310516 5025 0300024 SR

LR Q. 000105762°%2%  0.00252318%5 0120
N
h  0.682915G50ceiag,  0.684813700ce1560

Q,h?  0.0224682700001075%  0.02246851 0 00010103
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ILSBR Model-1-
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ILSBR Model-2-

Model Par Best fit Mean
0. 0310516 5025 0300024 SR

LR Q. 000105762°%2%  0.00252318%5 0120
N
h  0.682915G50ceiag,  0.684813700ce1560

Q,h?  0.0224682700001075%  0.02246851 0 00010103
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Comparing Models-1-

Model Par Best fit Mean
AcDM T 0.312308 0 O0EO7ELS 0. 312583 0. 00G07 262
h 0. ﬁ?gﬁm“'% Dc?ﬂ?;:;???ss 0. 573435“‘% Dc?ﬂ?:; 41177
Quh?  0.022610 O QOOHETE - 0.0224002 1, OIS
\ACDM O 0. 31473st%230%%3§2‘:55 u,315252t%930%%3§21122
A 0.00992075+% 03111655;7% 0.011897 HE' 0. Ull 11 5;435
Quh?  0.02266981 0000100 g 022a8s5 T 0.ODDLEOTIE.
IBR fhaa o 3105542]3 %UB;JZDEQB 0 31219t%%%3223111199
v e et
A o,msssss*?]ﬂulls;fﬂ% u,mmszz*‘i’]“&fﬁ&é
b 0-s2033 G T 0.6813657 R
Q,h% 0.0224867 10 %ﬁaﬁa‘:ﬁ 0.0224764 1 0: %555;2255
R O 0. 310515t%?§'077225§‘3:77 0. 309921#:% 05'077225;3'?911
e ooum B o L
Y oome I oomme i
h 0.682015 1 0, 0661987 0. 534313*?39301?12255%
2,47 0. *3224532+°D 00301155114433 00224685+ 0: %5511553311
LseR Om 0. 313552*%0‘"0;’:%;7:1555:% 0.3140187 0 Z g oneroeos
Dispr 0.0a58a190, 014588 0.020568a T4 01401
A 0.0154082 +?] ot 0.0148823 +?] oLaerr
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Comparing Models-2-

Model anmmf AlCc AAICe

ACDM 1073.9795 1080.0014 0

INCDM 1073.1076 1081.1443 1.1429

IBR 1072.6870 1082.7420 2.7406
ILR 1072.6477 1082.7028 2.7014
ILSBR 1072.6200 1082.7600 2.6685

Notice that All the interacting models will induce a BRI!!!
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Results: The evolution of fog (growth rate)-1-
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Results: The evolution of fog (growth rate)-2-
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Bouali, Albarran, Bouhmadi-Lépez, Errahmani and Ouali, Phys. of The Dark Universe, arXiv:2103.13432[astro-ph.CO].
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Late-time acceleration of the Universe within
GR: A 3-form field




Can we have something more fundamental to describe DE?

e Can we have something more fundamental to describe phantom DE
models?

A possibility come in the form of 3-forms.

e Inspired in string theory: Copeland, Lahiri,Wands (1995)

e Massless 3-form as Cosmological Constant (solving CC problem):
Turok, Hawking (1998)

e [nflation or late time acceleration driven by self-interacting 3-forms:
Koivisto, Nunes (2009) and (2010)

e Non-Gaussianity: Kumar, Mulryne, Nunes, Marto, Moniz (2016)

e Quantum cosmology with 3-forms: Bouhmadi-Lépez, Brizuela, Garay

(2018)

e The answer as we will see in a momment is yes:
Phantom DE models (LSBR): Morais, Bouhmadi-Lépez, Kumar,
Marto, Tavakoli (2017) and Bouhmadi-Lépez, Marto, Morais and
Silva (2017)
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Late-time acceleration of the Universe within
GR: A 3-form field

Reviewing the 3-form field A,,,



A p-form is a totally anti-symmetric covariant tensor:

Wpreopp = Wln.opap] -
In D-dimensions, the number of degrees of freedom of a massive p-form is

(D - 1)!

degrees of freedom = m :

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
Section based on Morais, B.L, Kumar, Marto and Tavakoli, Phys. Dark Univ. 15, 7 (2017) [arXiv:1608.01679 [gr-qc]]
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p-forms in mology

In a 4-dimensional space-time:

e p =0 (scalar field) = 1 degree of freedom
e p =1 (vector field) = 3 degrees of freedom
e p =2 = 3 degrees of freedom

e p =3 =1 degree of freedom

= The scalar field and the 3-form are the only ones compatible with a
homogeneous and isotropic universe (in an easy way).

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T.'S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)

a1



The 3-form action

e We will consider the following action for a massive 3-form, A,

minimally coupled to gravity

1
= / d*xy/| det gy | [—%FWWFWU - V(A’“”’AWP)} :

e The strength tensor, a 4-form, is defined through the exterior
derivative: Fj.p0 =4V, AL 0]

e The equation of motion, obtained from variation of SA s

i 2%
VO-F purp 12@/4;“,[) = 0

e = a massless 3-form is equivalent to a cosmological constanst

C. Germani and A. Kehagias, J. Cosmol. Astropart. Phys. 2009, 28 (2009)
T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
M. Duff and P. Van Nieuwenhuizen, Phys. Lett. B 94, 179 (1980)
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3-form Cosmology

We consider a homogeneous and isotropic universe described by the
Friedmann-Lemaftre-Robertson-Walker line element

ds? = —dt® + a%(t)y;dx'dx .
t - cosmic time, {} = d{}/dt
a - scale factor
x' - comoving spatial coordinates (roman indices run from 1 to 3).

Only the purely spatial components of the 3-form are dynamical:

Agj =0, A = @ (t)x(t)eji -

T. S. Koivisto, D. F. Mota, and C. Pitrou, J. High Energy Phys. 2009, 92 (2009)
Koivisto and Nunes PLB [arXiv:0907.3883], idem PRD [arXiv:0908.0920]
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3-form Cosmology: background equations

= Friedmann Equation

1
3H? = k2py = K7 | = (¢ +3HX)" + V(X?)

= Raychaudhuri equation
2 K2 OV

K
-— P)=——xy—.
2(/’)("’ x) 2X(9X

H =
A 3-form can show phantom-like behavior if 9V /dx? < 0.
=- Equation of motion

. . : oV
X+ 3Hx+3Hx+ — =0.
ox
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3-form Cosmology: evolution of y-1-

Combining the Raychaudhuri equation and the equation of motion for y:

2\ oV
X+ 3HY + <1— ’(2) ~0.
xe/ 0x
The static solutions are:
. . ., oV
e the critical points of the potential: Ve 0,
X
e the limiting points: x = £ x..

Once inside the interval [—xc, x|, the field x evolves towards a local
minimum of V. However. ..
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3-form Cosmology: evolution of y-2-

e Independently of the shape of a
regular potential, in absence of DM
interaction, the 3-form decays
rapidly towards the interval

[7XC, XC] Koivisto and Nunes PLB [arXiv:0907.3883)], idem

PRD [arXiv:0908.0920]

e In an expanding Universe, once
inside the interval [—xc, X, the
3-form will end up in one of the
minima of the potential (notice
Vet # V).

e If the 3-form stops at the limits of
this interval:

X = £Xc
e —— Universe heads towards a

LSBR event (xc = +/2/3k?)

and x =0

VIiVy

46



Behaviour of fog
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Let me add that 3-forms can be quite interesting for further reasons as:

o They aIIOW natura”y fOI’ I’egu|ar BHS (Bouhmadi-Lo’pez, Chen, Chew, Ong and Yeom, arXiv:
2005.13260 [gr-qc]. Published in EPJC )
e They naturally support wormholes without changing the sign of the

kinetic energy (Bouhmadi—Lépez, Chen, Chew, Ong and Yeom, arXiv: 2108.07302 [gr-qc]. Published in JCAP 47
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DE singularities in GR: a quantum approach




On the quantum fate of singularities in a dark-energy dominated

universe

e There is no successful quantum gravity theory so far that

would lead to THE theory of quantum cosmology

e There are, however, several approaches in this direction.
Here we will follow the most conservative one which

corresponds to the Wheeler deWitt approach.

e The Wheeler DeWitt equation is the equivalent to

Schrodinger like equation
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On the quantum fate of singularities in a dark-energy dominated

universe within GR

Within the framework of quantum geometrodynamics and mainly

within a Born Oppenheimer approximation

It was shown that the big rip can be removed pabrowski, Kiefer and

Sandhéfer, PRD, [arXiv:hep-th/0605229], Alonso, B.L. and Martin-Moruno, PRD, [arXiv:1802.03290 [gr-qc]].

It was shown the avoidance of a big brake singularity ramenshenik,
Kiefer and Sandhéfer 07', PRD, [arXiv:0705.1688].

It was shown also the avoidance of a big démarrage
singularity and a blg freeze BL, Kiefer, Sandhéfer and Moniz, PRD, [arXiv:0905.2421]
Type \Y) singularity is removed BL, Krimer and Kiefer, PRD, [arXiv:1312.5976].

It has been shown as well that LR can be removed aiarran, 5L,

Kiefer, Marto, Moniz, PRD, [arXiv:1604.08365] .

Review the on the topic by B.L., Kiefer and Martin-Moruno
arXiv:1904.01836 (GRG)
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LSBR driven by a scalar field

e Phantom scalar field ¢: py = —%gﬁ2 +V(), py= —%q'ﬁz — V(9)
$+3HG—V/(¢) =0, V(¢) = § +2mAG (¢ — ¢1)’

a =In(a/ao)

(< /o /

a8 g

VA
&

o B B
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LSBR: Quantisation with a scalar field

e The Wheeler-DeWitt equation:

2
e Can be solved within the BO:

e The gravitational part are oscillatory or exponential functions.
e The matter part can be written as parabolic cylinder functions that

K2 {/3 0% 0?

2|6 0a2 Jr%ﬁz} U(a, ¢) + age®* V(o)e(a, ¢) = 0

decay to zero at large value of the scale factor.

e It can be shown that there are solutions (wave functions) that
vanishe close to the classically abrupt event. Therefore, the DeWitt
condition is fullfilled. This result can be interpreted as an “abrupt
event” avoidance.

Albarran, BL, Cabral, Martin-Moruno, JCAP, [arXiv:1509.07398] (minimally coupled scalar field)
B.L., Brizuela and Garay, JCAP, [arXiv:1802.05164 [gr-qc]] (3-forms)

Borislavov Vasilev, B.L., Martin-Moruno, PRD, [arXiv:1907.13081 [gr-qc]] (f(R) metric theories)
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LSBR: Quantisation with a 3-form-1-

e The classical action for a FLRW universe (spatially flat) reads:

S=5,+5 —/dtVN _"é2+ifa3v
T OATOEH 2kN2 ' 2a3N2 '

where ¢ = a%y.
e The classical Hamiltonian for a FLRW universe (spatially flat) reads:

H=N —£2+i32+a3v
- 2apa 2p¢ )
where
oL aa L ¢

PSRN P T 5T BN

B.L., Brizuela and Garay, JCAP, [arXiv:1802.05164 [gr-qc]] (3-forms)
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LSBR: Quantisation with a 3-form-2-

e The classical Hamiltonian for a FLRW universe (spatially flat) can
be rewritten as:

H=N <;GABPAPB +a*V (6(a3¢)2)> ,

with A and B indices referring to a or ¢ and the mini-superspace
metric given by

(o)
>
[os)
|
7N
\
©ula
mw o
~
o
(o]
Il
VR
\
© .l
Y- o
~
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LSBR: Quantisation with a 3-form-3-

e With the usual prescription, we transform the classical dynamical
variables into quantum operators by means of the Laplace-Beltrami

operator:

2

GABpApB — —\/h_iGaA(\/ —GGABaB) s

where G is the determinant of Guag.

e The Wheeler-DeWitt equation then reads:

(h*K0% — B295 +2V) §(B, ) = 0,
and B8 =a%/3 .

54



LSBR: Quantisation with a 3-form-4-

e The potential:
V = Voe XX = e N9/8

with \2 = /1/202, and o the dimensionless width of the Gaussian

potential.

e The WDW equation is given now by:

(hznaf, o 2v0e-9A2¢2/52) W(B,4) = 0.
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LSBR: Quantisation with a 3-form-5-

e The WdW eq. can be solved as follows:
e The matter part can be written in different ways depending on the
approximations used
e Constant potential (exponential decreasing functions)
e Linear approximation for the potential + a B.O. approximation (Airy
functions)
e quadratic approximation for the potential + a B.O. approximation
(Bessel functions)
e Full potential + a B.O. approximation and a WKB approximation
(not on the paper, | notice when preparing this seminar)
e The matter part decays to zero at large value of the scale factor.
e The gravitational part are oscillatory or exponential (decaying)
functions.

e It can be shown that there are solutions (wave functions) that
vanishe close to the classically abrupt event. Therefore, the DeWitt
condition is fullfilled. This result can be interpreted as an “abrupt
event” avoidance.

B.L., Brizuela and Garay, JCAP, [arXiv:1802.05164 [gr-qc]] (3-forms)
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DE singularities within modified theories of
gravity (metric and Palatini examples): a
quantum approach




DE singularities within modified theories of
gravity (metric and Palatini examples): a

quantum approach

A Metric road



f(R)-gravity: The action

The Einstein-Hilbert action is replaced by
1
5 = 2—2/d4x«/fgf(R), K2 =8nG
K

where f(R) is a generic function of the Ricci scalar R.

Among the general class of Modified Theories of Gravity, f(R)-gravity
has been one of the most studied cases

e The simple equations of motion are easy to study;

e f(R)-gravity already captures interesting effects of MTG (e.g. the
Starobinsky model for R? inflation);

e Possibility to avoid the solar system constraints (e.g. through the
chameleon mechanism).

Nojiri and Odintsov, Int. J. Geom. Meth. Mod. Phys. 4, 115 (2007) [hep-th/0601213], Capozziello and De Laurentis, Phys. Rept. 509, 167

(2011) [arXiv:1108.6266 [gr-qc]].
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f(R)-gravity: The different formalisms

Within the f(R)-theories of gravity we can identify different classes:

e metric formalism: the metric includes all the dynamical degrees of
freedom.

e Palatini formalism: the connection I is independent of the metric g.

e metric-affine formalism: like the Palatini formalism but the matter
Lagrangian density depends on both the metric and the connection.

e hybrid metric-Palatini formalism: a mixed action with terms that
depend on the metric and the Levi-Civita connection and terms that
depend on the metric and the independent connection.
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f(R)-gravity: The modified Einstein equations

In the metric formalism, variation of the gravitational action with regards
to the metric g"” leads to the modified Einstein equations:

1
RuufR - Eguuf - (vuvu - gul/D) fR = /i2 T(m)p,ua
-2 6Lm df

O:=g.V.V, fr:

(m) . = et
Yy, =R

T Ve
The absence of extra coupling with the matter sector means that the
usual matter conservation is verified

v, TM" =0
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f(R)-gravity: Cosmology

Consider the FLRW metric

5,-J-dxidxf

ds?> = —dt? + ,
1-K(x24y2+22)

K=-1,0,+1.

Taking the (00) component of Einstein equation, we get the Friedmann
equation

K 1 .
3 (H2 + a2> fr+ 5 (f = frR) + 3HRfeg = K2 pm
complemented by the conservation equation
Pm + 3H (pm + Pm) =0,

where x := (0x)/(0t).
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A quantum approach within metric f(R) theory

e The modified WdW equation (first obtained by Vilenkin back in the
80")
2-ta_v v =0
q_? x (q,x) (q,X)— )

where the potential is given by

2 2

q fro q

V(g,x) = —= |k+ — (f — Rfg) —
(q/X) 2 |: +6R0( R) f‘,%] )

and

= \/ﬁoa(fR/fRo)l/z and x = III(fR/fRo)l/z,

e It is a PDE because in metric f(R) theories there is an extra degree
of freedom, the scaleron.
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f(R) quantum cosmology and the BR

e A suitable choice would be

f(R)=ay RY,  with ~v=2+/3/2,

e Then A
V(q,X) _Fefoqﬁ
Roa(R/Ro)’ T , x=In(R/Ry)T ,
where A = 6; 30(1Jr\f) and B—27 2—6 24/6.

e The WdW equation becomes

A
q282 82 qu6 \ll(q,x) —=0.

e |t cannot be solved exactly but it can be shown there are
approximate solutions (wave functions) that vanishe close to the
classically singularity. Therefore, the DeWitt condition is fullfilled.
This result can be interpreted as an singularity avoidance.

62
Alonso-Serrano, Bouhmadi-Lépez and Martin-Moruno, PRD [arXiv:1802.03290 [gr-qc]].



DE singularities within modified theories of
gravity (metric and Palatini examples): a

quantum approach

A Palatini approach



DE singularities within modified theories of gravity: a quantum

approach within EiBI theory-1-

e There have been many proposals for alternative theories of GR as
old as the theory itself

e One of the oldest proposal was due to Eddington

e In Eddington proposal, the connection rather than the metric plays
the fundamental role of the theory

e It is equivalent to GR in vacuum

e BUT does not incorporate matter

e An Eddington-inspired-Born-Infeld theory has been proposed by

Banados and Ferreira

Bafiados and Ferreira, PRL, [arXiv:1006.1769]

63



EiBl theory-2-

Seimi(g, [ V) = 2 [ d* | /Iguw + #Ru (D] = M1l | + Sm(e, T, V)

We consider the action under the Palatini formalism, i.e., the
connection FIO;V is not the Levi-Civita connection of the metric g,,,,
This Lagrangian has two well defined limits: (i) when |kR] is very
large, we recover Eddington’s theory and (ii) when |sR| is small, we
obtain the Hilbert-Einstein action with an effective cosmological
constant A = (A —1)/k

A solution of the above action can be characterized by two different
Ricci tensors: Ry, (') as presented on the action and R, (g)
constructed from the metric g

There are in addition three ways of defining the scalar curvature.
These are: g"" Ry, (g), 8" Ruw () and R(I'). The third one is
derived from the contraction between R, (I') and the metric
compatible with the connection I

Therefore, whenever, we refer to singularity avoidance, one must
specify the specific scalar curvature(s). This will affect the way we

apply the DeWitt criterium c



EiBl theory-3-

e Gravitational action:

2 /
SEiBI(gv rv \U) = ; / d4X |: |g,u1/ + KRIW(FN - A V |g|:| +Sm(g7 r7 \U)

e The parameter k has been constrained using observationally for
example from BBN (Casanellas at al, ApJ, arXiv:1109.0249, Avelino, PRD, arXiv:1201.2544).

e The model can avoid the Big Bang singularity, for example, in a
radiation dominated universe (gafiados and Ferreira, PRL, ariv:1006.1769 + 2012).

e Has been proposed as an alternative scenario to the inflationary
pa radigm (Avelino, PRD, arXiv:1205.6676)

e |t was shown that if the null energy condition is fullfilled then the
apparent null energy condition is also fullfilled (pesiate and steinhofr, PRI,

arXiv:1201.4989).

e Can this theory avoid the big rip singularity? Answer No (sL, che-vu chen,

Pisin Chen, EPJC, arXiv:1302.6249, EPJC, arXiv:1406.6157, PRD, arXiv:1407.5114, EPJC, arXiv:1507.00028)
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Towards EiBIl quantisation-1-

e The equation of motion of EiBI theory can be equally obtain from

the action (peisste and Steinhoff, PRL, arxiv:1201.4989)

S, = A/d“xﬁ[R(r) — % + %(q“ﬁgaﬁ - 27)} + Sm(g),

e Unlike the EiBI action, this action is linear on R(I'). This makes the
quantization much “simpler”

e The starting point is the homogeneous and isotropic ansatz of the
Universe:

godxtdx” = —N(t)2dt? + a(t)?dx?,
quudxtdx’ = —M(t)?dt? + b(t)*dx>.
where N(t) and M(t) are the lapse functions of g, and g,,.,

respectively.
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Towards EiBIl quantisation-2-

e The Lagrangian reads

652 2>\+1(N2 2 Na3
M?2 p? K K

= 432 _ 2W)} —2p(a)Na®,

_ 3]
£ =M | A

e The Hamiltonian reads (as there is no singularity at b = 0 for the
model, we can safely rescale the Hamiltonian as)

p?p?  2)\? 1 3\
39, _ | _ PPy 6 2.6 _ 2.4] _
bH_M[ o T Hb+l€)\(/\+f£p(a))a Kab} 0

e Then, we can write down the WDW equation by choosing the
following factor ordering:

6t = -1 (o) (o35) = () (1)
where x = In(v/Ab).
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Towards EiBIl quantisation-3-

e Therefore, the WDW equation reads:

[aa—; + vl(a,x)}\U(a,x) —0,

where

24
Vi(a, x) = 2 [266)( — 3% + (A + Hp(a))236:|.

e |t can be shown that the wave function decays and vanishes when
approaching a — oo.

e The DeWitt criterium is therefore fullfilled!!!

BL, Che-Yu Chen, JCAP, arXiv:1609.00700. See also our work, EPJC, arXiv:1911.03935
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Conclusions




Conclusions

e We have followed a phenomenological approach to describe the
late-time acceleration of the universe.

e We have also shown that the late-time acceleration of the Universe
can be described through a phantom DE component

e We have looked for the observational fit and the perturbations

e We have described phantom DE through a more fundamental field
encoded in a 3-form

e Then finally, we have shown using the WDW equation that the DE
singularities or abrupt event can be unharmful in a quantum context.

Thank you for your attention !!!
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