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Introduction

▸ Einstein’s general relativity (GR) explains gravity in geometrical terms:

▸ distances are measured through the metric gµν

▸ the gravitational force is determined by the (affine) Levi-Civita connection Γ ρ
µ σ

This beautiful construction (which flows from the equivalence principle) accounts for all
gravitational observations performed so far, including today’s nearly-exponential accelerated
expansion of the universe if the cosmological constant is present.

From the purely geometrical point of view gµν and A ρ
µ σ , unlike in GR, can be

completely independent objects and, moreover, can contain extra degrees of
freedom besides the spin-2 graviton. This generalized scenario is known as
metric-affine gravity.
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Necessary ingredients for gravitational theories
To implement the general relativity principle, which states that all laws of physics
should be invariant under general coordinate transformations, we need

▸ the metric gµν to define distances

▸ the connection A ρ
µ σ to define covariant derivatives

→ distorsion ≡ C ρ
µ σ ≡ A ρ

µ σ − Γ ρ
µ σ , (a tensor)

The curvature associated with A ρ
µ σ is defined by

F ρ
µν σ ≡ ∂µA ρ

ν σ − ∂νA ρ
µ σ +A

ρ
µ λ
A λ
ν σ −A

ρ
ν λ
A λ
µ σ

= R ρ
µν σ +DµC ρ

ν σ −DνC ρ
µ σ +C

ρ
µ λ

C λ
ν σ −C

ρ
ν λ

C λ
µ σ ,

where R ρ
µν σ is the standard Riemann tensor and Dµ is the covariant derivative

computed with the Levi-Civita connection. We can define a scalar

R ≡ F µν
µν

and a pseudoscalar [Hojman, Mukku, Sayed (1980); Nelson (1980); Holst (1995)]

“Holst invariant” ≡R′ ≡ 1
√−g

εµνρσFµνρσ ,

where εµνρσ is the totally antisymmetric Levi-Civita symbol with ε0123 = 1.

R′ = 0 for C ρ
µ σ = 0 as Rµνρσ +Rνσρµ +Rσµρν = 0

For a recent overview [Baldazzi, Melichev, Percacci (2021)]

https://inspirehep.net/literature/159550
https://inspirehep.net/literature/9855
https://inspirehep.net/literature/401993
https://inspirehep.net/literature/1994091


Adding matter

Consider a generic number of

▸ real scalars (or pseudoscalars) φ

▸ gauge (covariant vector) fields AIµ corresponding to an internal gauge group G

▸ Weyl fermions ψ

In the presence of fermions Dµgαβ = 0 (metric compatibility)

The gauge fields AIµ, together with the connection A ρ
µ σ , allow us to define covariant

derivatives with respect to both general coordinate transformations and G:

Dµφ = ∂µφ + iθIAIµφ, Dµψ = ∂µψ + itIAIµψ +
1

2
Aabµ σabψ,

where σab ≡ 1
4
(σaσ̄b − σbσ̄a), also σi ≡ −σ̄i (i = 1,2,3) are the Pauli matrices and

σ0 ≡ σ̄0 ≡ 1 is the 2 × 2 identity matrix. The gauge couplings are in the G-generators
θI and tI .

Also, we can define the field strength associated with G

F Iµν ≡ ∂µAIν − ∂νAIµ − fKJIAKµ AJν

and the fKJI are the structure constants of G. It is always a tensor



General theories with non-dynamical distorsion

The most general local effective field theory with non-dynamical C ρ
µ σ has action

Seq = ∫ d4x
√−g (FµνρσT µνρσ(Φ) +Σ(Φ,DΦ,C)) ,

where Φ represents the set of fields that are independent of C ρ
µ σ , namely

Φ = {gµν , φ,ψ,F Iµν , ...},

the dots are curvatures and covariant derivatives of the previous fields constructed
with the Levi-Civita connection.

When the action has the form Seq the distorsion is not dynamical because the field
equations of C ρ

µ σ are purely algebraic in C ρ
µ σ . Therefore, in principle, these

equations can be solved exactly to find C ρ
µ σ as a functional of Φ. Once this is done,

the theory with action Seq can always be written as a metric theory.

We can thus state that the theories with non-dynamical distorsion are those whose
action is linear in the curvature F ρ

µν σ of the full connection A ρ
µ σ with the

“coefficients” of the linear terms, i.e. the tensor T µνρσ(Φ), being independent of the
distorsion itself.
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Theories with dynamical distorsion

The general form, Seq, of theories with non-dynamical distorsion is useful, among
other things, because it allows us to identify those theories with a dynamical
distorsion: they are those whose action can never be brought into the form Seq.

Example

S = ∫ d4x
√−g (FµνρσT µνρσ(Φ) +∆(Φ,R,R′) +Σ(Φ,DΦ,C)) ,

barring specific choices of the action (e.g.
∆ = ∆(Φ, α(Φ)R + β(Φ)R′),Σ = Σ(Φ,DΦ))

→ Can the inflaton be identified with an extra dynamical component of the connection?

The main motivation for answering this question is to understand whether the inflaton
can have a geometrical origin too
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Inflation: introduction

Inflation is a nearly-exponential expansion that occurred during the early stages of the
universe.

▸ It is driven by a spin-0 field, the inflaton

▸ The inflaton has an appropriate potential, which guarantees that such an
expansion not only occurred, but also eventually came to an end: a reheating
must take place after inflation in order to generate all particles we observe



Inflation: introduction

→ Can the inflaton be identified with an extra dynamical component of the connection?

Who is the inflaton? Are the observational bounds satisfied?

To do list

▸ Find whether the connection contains a spin-0 field with an appropriate potential

▸ Identify the region of parameter space with viable values of the scalar spectral
index ns, the tensor-to-scalar ratio r and the curvature power spectrum PR
[Planck collaboration (2018); BICEP/Keck collaboration (2021) (BK18)]

▸ Understand whether an efficient production of known particles, such as electrons,
quarks and Higgs bosons (reheating) can take place after inflation

https://arxiv.org/abs/1807.06211
https://arxiv.org/abs/2110.00483
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The key idea

When A ρ
µ σ and gµν are independent there are 2 rather than 1 invariant that are

linear in
F ρ
µν σ ≡ ∂µA ρ

ν σ +A
ρ
µ λ
A λ
ν σ − (µ↔ ν)

1. The usual Ricci-like scalar R ≡ F µν
µν

2. The parity-odd Holst invariant R′ ≡ εµνρσFµνρσ/
√−g

[Hojman, Mukku, Sayed (1980); Nelson (1980); Holst (1995)]

In the GR case, where A ρ
µ σ equals the Levi-Civita connection, R coincides with the

Ricci scalar, R, but R′ vanishes. For this reason in metric-affine gravity R′ can be
understood as a component of the connection

The key idea here is to identify the inflaton with R′.
To do so R′ has to be a dynamical field, which is independent of the metric

https://inspirehep.net/literature/159550
https://inspirehep.net/literature/9855
https://inspirehep.net/literature/401993
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The minimal model

The simplest inflationary action that realizes this is

SI = ∫ d4x
√−g (αR + βR′ + cR′2)

Indeed,
▸ for c = 0 one can easily show, by solving the connection equations, that SI is

equivalent to the Einstein-Hilbert action, having identified α =M2
P /2

▸ for c ≠ 0, standard auxiliary field methods show that an extra spin-0 parity odd
dynamical field ζ′ (the “pseudoscalaron”) is present and equals R′ on shell
[Hecht, Nester, Zhytnikov (1996); Beltrán Jiménez, Maldonado Torralba (2019)]

▸ the βR′ term, a.k.a the Holst term, is also necessary to obtain a suitable inflaton
potential, as we will see;
the quantity M2

P /(4β) is called the Barbero-Immirzi parameter [Immirzi (1996)]

SI can be recast in the following metric form (where the connection equals the
Levi-Civita one)

SI = ∫ d4x
√−g [

M2
P

2
R − (∂ω)2

2
−U(ζ′(ω))]

where U(ζ′) = cζ′2 (c ≥ 0 for stability reasons) and

ζ′(ω) = 1

2c

⎛
⎝

M2
P tanhX(ω)

4
√

1 − tanh2X(ω)
− β

⎞
⎠
, X(ω) ≡

√
2

3

ω

MP
+ tanh−1

⎛
⎜
⎝

4β
√

16β2 +M4
P

⎞
⎟
⎠

https://inspirehep.net/literature/429673
https://arxiv.org/abs/1910.07506
https://inspirehep.net/literature/427314


Slow-roll inflation

The slow-roll approximation can be used when

ε ≡
M2
P

2
( 1

U

dU

dω
)
2

≪ 1, η ≡
M2
P

U

d2U

dω2
≪ 1

and in this case the number of e-folds Ne as a function of the field ω is given by

Ne(ω) = N(ω) −N(ωend), N(ω) = 1

M2
P
∫

ω
dω′ ( dU

dω′
)
−1

U

and ωend satisfies ε(ωend) = 1. Then ns, r and PR (at horizon exit) are

ns = 1 − 6ε + 2η, r = 16ε, PR = U/ε
24π2M4

P



Analytical formulæ for inflationary observables

ε(ω) =
4M4

P cosh2X(ω)
3 (M2

P sinhX(ω) − 4β)2
,

η(ω) =
4M2

P (M2
P cosh (2X(ω)) − 4β sinhX(ω))

3 (M2
P sinhX(ω) − 4β)2

,

N(ω) = 3

4
log (coshX(ω)) − 3β arctan (sinhX(ω))

M2
P

,

ns(ω) = 1 −
8M4

P cosh2X(ω)
(M2

P sinhX(ω) − 4β)2

+
8M2

P (M2
P cosh (2X(ω)) − 4β sinhX(ω))

3 (M2
P sinhX(ω) − 4β)2

,

r(ω) =
64M4

P cosh2X(ω)
3 (M2

P sinhX(ω) − 4β)2
,

PR(ω) =
(β − M2

P sinhX(ω)

4
)
2

(M2
P sinhX(ω) − 4β)2 sech2X(ω)

128π2cM8
P

.

Moreover, the analytic expressions of ω± (the two solutions of ε(ωend) = 1) are

ω± =
√

3

2
MP

⎛
⎝

sinh−1
⎛
⎝
±
¿
ÁÁÀ192β2

M4
P

− 4 − 12β

M2
P

⎞
⎠

− tanh−1
⎛
⎜
⎝

4β
√

16β2 +M4
P

⎞
⎟
⎠

⎞
⎟
⎠
.



The pseudoscalaron mass and full potential

(upper) mζ ' for Ne = 49

(lower) mζ ' for Ne = 60

(upper) c for Ne = 60

(lower) c for Ne = 49
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Left plot: the pseudoscalaron mass mζ′ and the corresponding value of c that gives
the observed PR at Ne e-folds before the end of inflation
Right plot: the corresponding pseudoscalaron potential for β = −80M2

P

In the ω potential there is a plateau, which is larger the larger ∣β∣ is and disappears when
β = 0. This is the reason why the βR′ term in SI is necessary

Given the shape of U(ζ′(ω)), we take ωend such that ∣ωend∣ = min(∣ω+∣, ∣ω−∣).



Predictions for ns and r

ns(ω)

r(ω)

ns = 0.965 ± 0.004 (1σ Planck 2018 band)
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ns and r as functions of the canonically normalized pseudoscalaron ω. In the inset the
slow-roll parameters are given. This plot shows that viable slow-roll inflation with an
appropriate Ne occurs for ω slightly above the Planck scale. As an example we have
set β = −300M2

P .



Predictions for ns and r
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Upper plots: ns and r compared with
the observational data. The green dots
are the predictions of Starobinsky
inflation.
Down plot: slow-roll parameters.

These plots show that slow-roll inflation
not only occurs, but is also remarkably
compatible with the most recent CMB
observations provided by Planck and
BK18 for large ∣β∣ (i.e. small values of
the Barbero-Immirzi parameter) and for
an appropriate number of e-folds Ne



Reheating: generalities

If ω decays into some SM particles with width Γω the reheating temperature TRH is

TRH ≳ min
⎛
⎝
(

45Γ2
ωM

2
P

4π3g∗
)
1/4

,(30ρvac

π2g∗
)
1/4⎞

⎠
,

where g∗ is the effective number of relativistic species in thermal equilibrium at
temperature TRH and ρvac is the vacuum energy density due to ω



Reheating: ω → fermion pair

Let us first consider a fermion f represented by a Dirac spinor Ψ with action

Sf = ∫
√−g 1

2
Ψ(i /D −mf )Ψ + h.c. ,

By using the connection equations one finds the following
effective pseudoscalaron-fermion-fermion interaction

Lωff =
cωff

MP
∂µωΨγ5γ

µΨ,

where

cωff = [ 3MP

1 + 16B2

dB

dω
]
ω=0

=
¿
ÁÁÀ 3M4

P

8(M4
P + 16β2)

, B(ω) = (β + 2cζ′(ω))/M2
P

This effective interaction leads to the decay ω → ff with width

Γω→ff = ∣cωff ∣2
mωm2

f

2πM2
P

¿
ÁÁÀ

1 −
4m2

f

m2
ω

This can efficiently reheat the universe up to a temperature above the electroweak
scale if mf is very large compared to that scale.

Such a fermion is not present in the SM, but it is possible to engineer a model where
there is a very heavy fermion with sizable couplings to SM particles



Reheating: ω → scalar pair (e.g. a pair of Higgs bosons)

In order to keep our analysis as model independent as possible, we consider another
channel: the decay of ω into two identical real scalar particles, e.g. two Higgs bosons.

This is possible when there is a non-minimal coupling between the real (canonically
normalized) scalar field φ in question and R in the action:

Snm = ∫
√−g ξφ

2

2
R

Snm is known to be generated by quantum corrections (it is more natural to include it)

Solving the connection equations one finds

Lωφφ =
cωφφ

MP
∂µωφ∂

µφ where cωφφ = [48ξMPB

1 + 16B2

dB

dω
]
ω=0

= 4
√

6βξ
√
M4
P + 16β2

Lωφφ only arises through the Holst term because cωφφ → 0 as β → 0 and gives

Γω→φφ = ∣cωφφ∣2
m3
ω

16πM2
P

¿
ÁÁÀ

1 −
4m2

φ

m2
ω

where mφ is the mass of φ. The channel ω → φφ can efficiently and naturally reheat
the universe up to a temperature much above the electroweak scale, even if one
identifies φ with the Higgs, so per se it does not require any beyond-the-SM physics.

E.g. taking mφ ≪mω , g∗ ∼ 102 and β ≳M2
P one finds TRH ≳ 109∣ξ∣ GeV.



Emergence of the equivalence principle

For any fixed spacetime point X, it is possible to choose a reference frame (called
locally inertial frame) where the laws of physics are those without gravity in a small
enough neighbourhood of X.

It is particularly interesting to see whether the equivalence principle holds in metric-affine
theories as these are gravitational theories constructed starting from the geometrical
principle of general covariance. Indeed, normally general covariance is seen as a
consequence of the equivalence principle, but can one reverse this logic?

▸ We define the “physics without gravity” as some theory with ordinary matter,
such as the one present in the SM and its common extensions. This can feature
(pseudo)scalars, gauge fields and fermions, which are enough to account for all
matter we observe and address the evidence of beyond-the-SM physics.

▸ Starting from the the general relativity principle the dynamical components of the
distorsion that can be massless are only spin-1 and spin-0 fields for realistic
theories (that must be stable and feature fermions and whose connection is,
therefore, metric compatible). This was obtained using the results of [Neville
(1978), (1981)] appropriately generalized to include matter fields.

▸ Therefore, at low enough energies the equivalence principle emerges: there are no
fields of spin higher than 1 besides the graviton.

https://inspirehep.net/literature/7304
https://inspirehep.net/literature/167241


Conclusions

▸ We have found the form of the action of a general metric-affine effective field
theory with a non-dynamical distorsion

▸ It has been found that a pseudoscalar component of a dynamical connection,
which is independent of the metric, can drive inflation in agreement with current
data. This pseudoscalaron is identified with the parity odd Holst invariant and
inflationary predictions in excellent agreement with data have been found for
small values of the Barbero-Immirzi parameter, where the inflaton potential
develops a plateau. The predictions approach, but do not quite reach, those of
Starobinsky inflation as the Barbero-Immirzi parameter goes to zero; for finite
values, on the other hand, the predictions significantly differ. Pseudoscalaron
inflation can be tested by future CMB observations, such as those of LiteBIRD.

▸ Moreover, the decays of the pseudoscalaron into Higgs particles can efficiently
reheat the universe after inflation up to a high enough temperature. This
temperature could be further increased by other channels, such as decays into
very massive fermions

▸ In a realistic metric-affine theory the equivalence principle always emerges at low
enough energies



Conclusions

▸ We have found the form of the action of a general metric-affine effective field theory with a
non-dynamical distorsion

▸ It has been found that a pseudoscalar component of a dynamical connection, which is
independent of the metric, can drive inflation in agreement with current data. This
pseudoscalaron is identified with the parity odd Holst invariant and inflationary predictions in
excellent agreement with data have been found for small values of the Barbero-Immirzi
parameter, where the inflaton potential develops a plateau. The predictions approach, but do
not quite reach, those of Starobinsky inflation as the Barbero-Immirzi parameter goes to
zero; for finite values, on the other hand, the predictions significantly differ. Pseudoscalaron
inflation can be tested by future CMB observations, such as those of LiteBIRD.

▸ Moreover, the decays of the pseudoscalaron into Higgs particles can efficiently reheat the
universe after inflation up to a high enough temperature. This temperature could be further
increased by other channels, such as decays into very massive fermions

▸ In a realistic metric-affine theory the equivalence principle always emerges at low enough
energies

Thank you very much for your attention!
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