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Further reading

Textbook-level introduction to QG:

I.L. Buchbinder and I.L. Shapiro, Introduction to Quantum Field
Theory with Applications to Quantum Gravity (Oxford University
Press, 2021).

Initial reading on effective QG:

J.F. Donoghue, Phys. Rev. Lett. 72 (1994) 2996, gr-qc/9310024;
Phys. Rev. D50 (1994) 3874, gr-qc/9405057; ∃ many reviews, etc.

C.P. Burgess, Living Rev. Rel. 7 (2004) 5, gr-qc/0311082.

Many interesting introductory-level reviews in the

Section “Effective Quantum Gravity” edited by C. Burgess and J.
Donoghue of the “Handbook of Quantum Gravity” (Editors C. Bambi,
L. Modesto and I.L. Shapiro, Springer Singapore, expected in 2023).
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• Publications with the approach described below.

Original paper: [DM] D.A.R. Dalvit and F.D. Mazzitelli, PRD56
(1997) 7779, hep-th/9708102.

General discussion:

I.Sh., Polemic notes on IR perturbative quantum gravity, Int. J. Mod.
Phys. A24 (2009) 1557, arXiv:0812.3521.

Calculation of effective QG corrections to Newton potentia l:

Tibério de Paula Netto, Leonardo Modesto, and I.Sh.,
Eur. Phys. J. C82 (2022) 160, arXiv: 2110.14263.

• Quantum GR is a universal IR theory of QG?
Wagno Cesar e Silva & I.Sh., Effective approach to the
Antoniadis-Mottola model: quantum decoupling of the higher
derivative terms, arXiv: 2301.13291.
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I. Effective approach.

The effective approach is the cornerstone of the applicatio n of
QFT to particle physics and maybe to all modern physics.

This approach explains why we do not care about fundamental
UV physical theory when dealing with low-energy phenomena.

For example, when we perform calculations of atomic spectra
there is almost no need to care about what is going on in the
atomic nuclei and absolutely no need to care about what is
going on at the level of quarks inside the nuclei.

The reason is that the energy scale of the two types of
phenomena is very much different. Low-energy experiments
may be not sensible to the high energy (UV) interactions.

One can find this way of thinking even starting from Classical
Mechanics, but in QFT it becomes a practical instrument.
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Technically, the effective approach assumes separation of the
low-energy (IR) quantum effects from the UV sector.

The idea was introduced by S. Weinberg in 70-s and became a
general QFT framework.

We can say that we have to either look for the “theory of
everything” or try to restrict our attention to something.

And in the last case there are always some parts of Nature whic h
are intentionally left behind because they do not belong to t he
given set of phenomena.

The classical examples are Fermi theory of weak interaction s,
NJL model of quarks, etc.

Another example is MSM which is extremely successful theory
of Particle Physics (maybe even too much!), regardless we do
know its “UV completion” and even whether there is one.
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Typically, in the effective approach, we have at least two di fferent
scales and in the IR one can ignore the effects of the massive
field because they are suppressed by a large mass parameter.

Another possibility is to use the fact that the UV divergence s are
always local and, in case of massive degrees of freedom, they
decouple in the IR .

The last means there is no non-local form factor in the IR. Thu s,
the link between the UV divergences and the non-local form
factor (usually logarithmic) disappears in the IR.

This means, we can use hierarchy of scales and separate only
the quantum effects of the light (or massless) fields, assumi ng
only these effects are relevant in the IR, i.e., for the
long-distance interactions.

From this perspective, quantum gravity is (as J. Donoghue wr ote
in some review) a perfect theory for applying effective appr oach.
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II. Effective low-energy quantum gravity.

It looks natural to use it for QG, where we actually meet two ve ry
different energy scales: MP ≈ 1019 GeVvs the mass of the
graviton, which is zero.

The global IR regulator comes from cosmology, but its energy
scale is related to the size of the Universe, i.e., it is relat ed to
Hubble parameter, µc ∼ H0 ≈ 10−42 GeV ≈ 10−60 MP .

This is certainly a maximal possible separation between the UV
and IR scales and we can expect that this theory will be a perfe ct
field of application of the effective approach.

In theory, one can calculate all IR quantities which are pote ntially
relevant for establishing universal features of quantum gr avity.

There are many different directions in effective QG (see the
“Handbook”), but the main traditional object of interest is the
quantum corrected Newtonian potential of gravitational
attraction between two massive point-like bodies.
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Standard approach to effective QG

J.F. Donoghue, Phys.Rev.Lett. 72 (1994); PRD 50 (1994).

Correcting first set of mistakes:
H.W. Hamber, S. Liu, Phys. Lett. B357 (1995) 51;
I.J. Muzinich, S. Vokos, Phys. Rev. D52 (1995) 3472;
A.A. Akhundov, S. Bellucci, A. Shiekh, Phys. Lett. B395 (1997) 16.

Providing gauge-fixing invariant contributions:
[DM] D.A.R. Dalvit and F.D. Mazzitelli, PRD 56 (1997) 7779.
J. A. Helayel-Neto, A. Penna-Firme, I.Sh., JHEP 0001 (2000) 009.

Should we include all the diagrams?
I. Sh., Polemic notes on IR perturbative QG, arXiv:0812.3521.

Conflicting results:
N.E.J. Bjerrum-Bohr, J.F. Donoghue, B.R. Holstein, PRD67 (2003);
I.B. Khriplovich, G.G. Kirilin, J.Exp.Theor.Phys. 95 (2002).

Earlier calculation:
Y. Iwasaki, Prog. Theor. Phys. 46 (1971) 1587.
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The standard effective QG starts as usual QG/GR.
J.F. Donoghue, Phys. Rev. Lett. 72 (1994) 2996, gr-qc/9310024;
Phys. Rev. D50 (1994) 3874, gr-qc/9405057; ... there are many
reviews and lectures.

St = SEH + Sgf + Sghost + Smatter ,

where

SEH = − 1
κ2

∫

d4x
√−g R ,

Sgf =
1
α

∫

d4x
√−g χµ χ

µ , χµ = ∂λ hλ
µ − β ∂µhλ

λ ;

Sghost =

∫

d4x
√−g C̄µ

δχµ

δhρσ

Rα
· ρσ Cα ,

Smatter =

∫

d4x
√−g

{

1
2

gµν ∂µφ∂νφ − 1
2

m2φ2
}

.

The assumed purpose is to derive the (quantum) gravitationa l
interaction between two scalars, of masses m1 and m2.
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At the classical level the situation is relatively simple

The tree-level scattering amplitude has the form

m1

m2

m1

m2

T (q) = 4π G m1 m2

~q 2 .

In the static limit q0 = 0 and q2 = −~q 2. After Fourier transform
∫

1

~q 2 ei~q·~r d3q =
1

4πr
,

we arrive at the Newton potential

V (r) = − G m1m2

r
,

which is the tree-level approximation to the potential for t he
interaction between two static sources.
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One-graviton exchange between the two masses gives Newton
law in the IR limit. What are the IR quantum corrections?

At the one-loop level there are two types of diagrams and two
types of IR-relevant contributions.

I. P-type terms.
∫

d3q
(2π)3 e−i~q·~r 1

√

~q2
=

1
2π2 r2 .

II. L-type terms.
∫

d3q
(2π)3 e−i~q·~r ln~q2 = − 1

2π2 r3 .

Phenomenologically, the P-type terms look much more
interesting. These terms are as the first post-Newtonian
approximation and hence we have to expect that QG will
reproduce the classical GR result, e.g., the precession of
the perihelion of Mercury. And if they do not?
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I. Graphs with massless (gravitational) internal lines

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

Those contribute only to the L-type terms.

These diagrams correspond to the path integral over metric,
while the massive scalar field is an external classical sourc e.

From the QFT viewpoint, this means we have to quantize only
the metric and then there is no big difference how we describe
the matter sources.

Also, we can use functional methods instead of diagrams.
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II. Graphs with both massless and massive (scalar
field) internal lines

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

m1

m2

These diagrams contribute to both L-type and P-type terms.

What means we include these diagrams?
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Classical or quantum?
Polemic Note: I.Sh., IJMPA; arXiv:0812.3521 [hep-th].

Massive scalars ...
What about fermions and, finally, macroscopic bodies?

The macroscopic bodies which take part in the relevant
gravitational interactions are not made from a scalar field.

In reality, they do consist from a baryonic matter, that mean s
interacting protons, neutrons and electrons.

These particles are not elementary (except electron) and
none of them may be properly described by a scalar field.

Of course, nucleons consist from quarks and gluons, so one
may think to replace the scalar field by the spinor one and try
to obtain the quantum gravity corrections taking, e.g., mix ed
graviton-quark diagrams.
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However, this way to describe barionic matter would not be
consistent because quarks are not free particles.

One of the manifestations of this is that the total mass of the u,
ū and d quarks is much smaller than the mass of the proton.
Calculating even the tree-level diagrams with quarks we hav e
no chance to get a correct result.

Another argument is that the Casimir effect corresponds to t he
quantization of fields, not of the classical sources. And the
results fit experimental data pretty well, up to our knowledg e.

Finally, we arrive at the conclusion that the “correct” set o f
diagrams includes only L-type. From the phenomenological
side, this means we are far from observing relevant effects
of QG at low energies.

Restricting the consideration by the L-type diagrams,
can we arrive at the well-defined quantum corrections?
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In particular, can we provide the independence of quantum
contributions from the gauge fixing parameters α and β ?

Sgf =
1
α

∫

d4x
√−g χµ χ

µ, χµ = ∇λ hλ
µ − β∇µhλ

λ .

And on the choice of parametrization of the quantum metric

gµν −→ g′

µν = gµν + κ(γ1φµν + γ2φgµν)

+ κ2(γ3φµρφ
ρ
ν + γ4gµνφρσφ

ρσ + γ5φφµν + γ6gµνφ
2) .

The consistency of a physical results requires their
independence on the parameters α, β and γk .

The unique consistent scheme of the effective QG calculatio n
satisfying this condition, has been developed in

[DM] D.A.R. Dalvit, F.D. Mazzitelli, hep-th/9708102, PRD.

Here we follow (see further references therein)

L. Modesto, Tibério P. Netto, I.Sh., arXiv:1412.0740, JHEP.
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Consider effective QG interacting with an arbitrary point- like
matter particle, not a scalar field.

S = − 1
κ2

∫

d4x
√−g R + Ssources,

Later on, we restrict our attention by the action of a point-l ike
particle Ssources = SM , Sm, etc., with coordinates yµ

SM = −M
∫

ds = −M
∫

√

gµν dyµdyν .

Furthermore, in the source sector, we shall need the point-l ike
mass energy-momentum tensor

T µν(x) = M
∫

ds δ (x − y(s))uµuν

and also the matrix

Mµν,αβ(x) =
M
4

∫

ds δ (x − y(s)) uµuνuαuβ .
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The first step is the derivation of the one loop divergences in the
theory of quantum gravity couples to classical material sources.

Γ̄(1) =
i
2

Tr ln Ĥ − i Tr ln Ĥgh,

where
(

S + Sgf
)(2)

=
1
2

∫

d4x
√−g φµν Hµν,αβ φαβ ,

and the bilinear form has an extra element Mµν,αβ compared to
the pure gravity

Hµν,αβ = − (Kµν,αβ
�+ Πµν,αβ + Mµν,αβ) .

We can use the relations

gµνMµν,αβ =
1
4

Tαβ, Mµν,αβMµν,αβ =
1
16

TµνT µν ,

TµνT µν = T 2, and T ≡ T µ
µ = M

∫

ds δ (x − y(s)) .

The calculations can be performed in a relatively simple way
using minimal gauge fixing.
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The final expression for the one loop divergences is

Γ̄
(1)
div = − µn−4

n − 4

∫

dnx
√−g

{

β2C2 − 1
3
β0R2 − 2κ2βRT1RµνT µν

+ κ2βRT2RT + κ4βTT T 2
}

,

where

β2 =
4c1 + c2

2(4π)2 , β0 = −c1 + c2 + 3c3

(4π)2 ,

βRT1 = − c4

2(4π)2 , βRT2 =
c5

(4π)2 , βTT =
c6

(4π)2

and

c1 =
53
45
, c2 = −361

90
− 4ξ2

γ4
1Z 2

, c3 =
43
36

+
ξ3

3γ4
1Z 4

, c4 = − 2ξ4

γ4
1Z 4

,

c5 =
5
24

− ξ5

6γ4
1Z 4

, c6 =
1
32

− ξ6

4γ4
1Z 4

, Z = γ1 + 4γ2 + 8γ0λ .

Clearly, there is a complicated parametrization dependenc e.
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So, the off shell expression is

Γ̄
(1)
div = − µn−4

n − 4

∫

dnx
√−g

{

β2C2 − 1
3
β0R2

− 2κ2βRT1RµνT µν + κ2βRT2RT + κ4βTT T 2
}

.

Using the classical equations of motion

Rµν − 1
2

gµνR =
κ2

2
Tµν ,

the divergences boil down to

Γ̄
(1)
div

∣

∣

on-shell
= − µn−4

(4π)2(n − 4)

∫

dnx
√−g

{

53
45

R2
µναβ − 373

480
κ4T 2

}

independently of the choice of parametrization and gauge
parameters, exactly as it should be.

However, we need the off shell result for our calculation.
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Reconstruction of the finite part of effective action can be
performed by using the rule valid for the massless fields
contributions, such as the graviton

µn−4

n − 4
−→ 1

2
ln
(

�

µ2

)

and we get, using the off shell expression,

Γ̄(1) = −
∫

d4x
√−g

{

1
2
β2Cµναβ ln

(

�

µ2

)

Cµναβ − 1
6
β0R ln

(

�

µ2

)

R

− κ2βRT1Rµν ln
(

�

µ2

)

T µν +
κ2

2
βRT2 R ln

(

�

µ2

)

T +
κ4

2
βTT T ln

(

�

µ2

)

T
}

.

The next steps are needed to eliminate gravity and arrive at t he
effective interaction between two classical massive sourc es.

Indeed, the gauge-fixing and parametrization independence
represents a kind of a perfect testing for the procedure.
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General formalism without effective approach

In the weak-field regime, we can safely restrict considerati on by
the second order in curvature terms.

Then the most general action of gravity is

Sgr = c0

∫

R +

∫

RµναβF̃1(�)Rµναβ

+

∫

Rµν F̃2(�)Rµν +

∫

RF̃3(�)R,
∫

≡
∫

d4x
√−g.

One can prove that

RµναβF (�)Rµναβ − 4RµνF (�)Rµν + RF (�)R = O(R3
...) ,

reducing the action to

Sgr = c0

∫

R +

∫

RµνF1(�)Rµν +

∫

RF2(�)R.
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Sgr = c0

∫

R +

∫

RµνF1(�)Rµν +

∫

RF3(�)R.

Using the known expansions and gauge invariance, it is possi ble
to reduce this expression to the equations of motion

εµν =
c0

2

{

a1(�)
(

�hµν − ∂µ∂λhν
λ − ∂ν∂λhµ

λ

)

+ a2(�)
(

ηµν∂α∂βhαβ − ηµν�h + ∂µ∂νh
)

+
[

a1(Box)− a2(�)
] 1
�
∂µ∂ν∂α∂βhαβ =

1
2

T µν ,

where

a1(�) = 1 +
1
c0

F1(�) , a2(�) = 1 − 1
c0

[

F1(�) + 4F2(�)
]

� .

Consider the spherically symmetric static metric

ds2 = (1 + 2ϕ)dt2 − (1 − 2ψ)(dx2 + dy2 + dz2),

ϕ = ϕ(r), ψ = ψ(r), r2 = x2 + y2 + z2, � −→ −∆ .
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The equations boil down to

[

a1(−∆)− a2(−∆)
]

∆ϕ+ a2(−∆)∆ψ = − 1
2c0

ρ,

[

a1(−∆)− 3a2(−∆)
]

∆(ϕ− 2ψ) = − 1
2c0

ρ.

These equations can be analysed for any particular choices o f a1

and a2 or, equivalently, F1 and F2.

An interesting observation is that for GR, ϕ = ψ.

The same feature holds in the case 2F1 + F2 = 0. Then ϕ = ψ.
The action can be written in a special form

Sgr =

∫

{

c0R + GµνF1(�)Rµν
}

.

This choice simplifies calculations and results, but from th e
physical viewpoint, there is nothing special in it.
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Using Fourier analysis, one can derive the following
presentation (not too easy)

ϕ(r) = − GM
2π2

∫

d3k
k2

[ 4
3f2(k2)

+
1

3f0(k2)

]

ei~k·~r ,

ψ(r) = − GM
2π2

∫

d3k
k2

[ 2
3f2(k2)

+
1

3f0(k2)

]

ei~k ·~r ,

where

f2(k
2) = a1(k

2) f0(k
2) =

3
2

a2(k
2)− 1

2
a1(k

2) .

More elaborated form is

ϕ(r) = − 2GM
π r

∞
∫

0

dk
sin kr

k

[ 4
3f2(k2)

+
1

3f0(k2)

]

,

ψ(r) = − 2GM
π r

∞
∫

0

dk
sin kr

k

[ 2
3f2(k2)

+
1

3f0(k2)

]

.
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After some calculus, these formulas give

I. GR. ϕ(r) = ψ(r) = − GM
r
.

II. Fourth derivative gravity

ϕ(r) = − GM
r

[

1 +
4
3

e−m2r − 1
3

e−m0r
]

,

ψ(r) = − GM
r

[

1 − 2
3

e−m2r − 1
3

e−m0r
]

.

The Newtonian singularity at the point r = 0 is removed by the
effect of massive spin-zero and spin-two modes.

III. Superrenormalizable models with six and more derivati ves

Newtonian singularity at the point r = 0 is washed away,
independent on whether the theory is polynomial or nonlocal .

What changes if we apply the effective approach? Everyhing!
Then, all terms except the GR part are just perturbations.

J.Z. Simon, PRD 41 (1990); L. Parker & J.Z. Simon, PRD 47 (1993).
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Consider small perturbations of the background metric arou nd
the Minkowski spacetime,

gµν = ηµν + κhµν , |κhµν | ≪ 1

Then

Γ = −1
2

∫

d4x
{

1
2

hµν f2�hµν − hµν f2∂µ∂λhλ
ν − 1

6
h [f2 + 2f0]�h

+
1
3

h [f2 + 2f0]∂µ∂νhµν +
1
3

hαβ [f2 − f0]
∂α∂β∂µ∂ν

�
hµν

}

− κ

2

∫

d4x
{

hµν fRT1T µν + κ2βRT2 hµν ln
(

�

µ2

)

(∂µ∂ν − ηµν�)T
}

,

The form factors are

fi = fi (�) = 1 + κ2βi ln
(

�

µ2

)

�, i = 2, 0,RT 1.

The term proportional to βTT has to be discarded, as it is O(M2)
and is beyond the weak-field approximation.
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The perturbations in the isotropic static Newtonian form ar e

κh00 = 2ϕ(r), κhij = 2δijψ(r) � −→ −∆,

and the source of the gravitational potentials should be a st atic
point-like mass located at the origin,

uµ = δµ0 , T µν = δµ0 δ
ν
0 ρ, ρ = Mδ(~r).

The metric potentials can be obtained from the 00–component
and from the trace of EoM,
[

f2(−∆)− f0(−∆)
]

∆ϕ+
[

f2(−∆) + 2f0(−∆)
]

∆ψ =

=
3κ2

4

[

fRT1(−∆) + κ2βRT2 ln
(

−∆

µ2

)

∆
]

ρ, (1)

f0(−∆)(∆ϕ− 2∆ψ) = −κ
2

4

[

fRT1(−∆) + 3κ2βRT2 ln(−∆/µ2)
]

ρ. (2)

These eqs. represent the basis of the subsequent calculatio ns.
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Performing the loop expansion of the potentials we get,

ϕ = ϕ(0) + ϕ(1) +O(~2) and ψ = ψ(0) + ψ(1) +O(~2).

Since βi = O(~), the equations at zero and first orders are

∆ϕ(0) = ∆ψ(0) =
κ2M

4
δ(~r ),

∆ψ(1) =
κ2β2

3
ln
(

− ∆

µ2

)

∆2[ϕ(0) + ψ(0)]

− κ2β0

3
ln
(

− ∆

µ2

)

∆2[ϕ(0) − 2ψ(0)]

+
κ4M

4
(−βRT1 + βRT2) ln

(

− ∆

µ2

)

∆δ(~r ),

∆ϕ(1) − 2∆ψ(1) = κ2β0 ln
(

− ∆

µ2

)

∆2(ϕ(0) − 2ψ(0))

+
κ4M

4
(βRT1 − 3βRT2) ln

(

− ∆

µ2

)

∆δ(~r).

These equations are linear and can be solved in a standard way .
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In the three-dimensional Fourier space, we obtain the follo wing
solutions for the transformed potentials:

ϕ(0)(k) = ψ(0)(k) = −κ
2M

4k2 ,

ϕ(1)(k) =
κ4M

4

(4
3
β2 −

1
3
β0 − βRT1 − βRT2

)

ln
(k2

µ2

)

,

ψ(1)(k) =
κ4M

4

(2
3
β2 +

1
3
β0 − βRT1 + βRT2

)

ln
(k2

µ2

)

,

where k = |~k |. Using the inverse Fourier transforms,
∫

d3k
(2π)3 e−i~k·~r 1

k2 =
1

4πr
,

∫

d3k
(2π)3 e−i~k·~r ln

(k2

µ2

)

= − 1
2πr3 ,

we arrive at the results

ϕ(r) = − κ2M
16πr

−
(4

3
β2 −

1
3
β0 − βRT1 − βRT2

) κ4M
8πr3 ,

ψ(r) = − κ2M
16πr

−
(2

3
β2 +

1
3
β0 − βRT1 + βRT2

) κ4M
8πr3 .
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Once again,

ϕ(r) = − κ2M
16πr

−
(4

3
β2 −

1
3
β0 − βRT1 − βRT2

) κ4M
8πr3 ,

ψ(r) = − κ2M
16πr

−
(2

3
β2 +

1
3
β0 − βRT1 + βRT2

) κ4M
8πr3 .

In the standard gµν + φµν parametrization limit, with γ1 → 1,
γ2,...,6 → 0 and γ0 → 0. Then, we get

ϕ(r) = −GM
r

(

1 +
61
60

G
πr2

)

,

ψ(r) = −GM
r

(

1 +
23
60

G
πr2

)

.

The bad part is that these quantum corrections to the
gravitational potentials are parametrization (and also
gauge-fixing) dependent, therefore they do not directly
correspond to physical observables.
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The motion of a test particle

Even though the loop corrections to the gravitational field
generated by a point-like mass depend on parametrization an d
gauge fixing, physical observables should be invariant.

Consider the acceleration of a test particle moving in the
gravitational field. The test particle couples with the quan tum
metric and its geodesic equation receives quantum correcti ons.

The two types of quantum corrections should combine into the
invariant quantum corrections to Newton’s law, m~a = ~F .

The action of the test particle is

Sm = −m
∫

√

gµν dxµdxν, xµ = (t ,~r ).

We assume m ≪ M, such that we can neglect contribution of the
small mass to the potentials ϕ(r) and ψ(r).
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The one-loop corrections can be obtained by the substitutio n
T µν −→ T µν + T µν

m , where

T µν
m = m

∫

ds δ (y − x(s))uµuν . (3)

Applying this procedure, yields relevant terms

Γ̄
(1)
m =

∫

d4x
√−g

{

κ2βRT1Rµν ln
(

�

µ2

)

T µν
m

− 1
2
κ2βRT2R ln

(

�

µ2

)

Tm − κ4βTT T ln
(

�

µ2

)

Tm

}

.

The total action for the test particle is Γm = Sm + Γ̄
(1)
m . Taking the

functional derivative with respect to xµ, we find

1
m
δΓm

δxµ
= −

(

d2xµ

ds2 + Γµαβ
dxα

ds
dxβ

ds

)

+
1
m
δΓ̄

(1)
m

δxµ
= 0. (4)
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As we already mentioned above, ln
(

− ∆
µ2

)

δ(~r) = − 1
2πr3 , that

gives, after a small calculation

1
m
δΓ̄

(1)
m

δ~r
= −κ

4M
8π

(−βRT1 − βRT2 + 4βTT)~∇
(

1
r3

)

. (5)

In our case, this gives

~a = −~∇
[

− κ2M
16πr

−
(4

3
β2 −

1
3
β0 − 2βRT1 − 2βRT2 + 4βTT

) κ4M
8πr3

]

.

The quantum corrected Newtonian potential is defined from
~a = −gradU. Thus, we get

U(r) = − κ2M
16πr

−
(4

3
β2 −

1
3
β0 − 2βRT1 − 2βRT2 + 4βTT

) κ4M
8πr3 .

and, finally,

U(r) = − GM
r

(

1 +
17
20

G
πr2

)

,

which does not depend on parametrization or gauge parameter s.
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Gauge invariance in quantum gravity (QG)

Let us prove that the combination

βinv =
4
3
β2 −

1
3
β0 − 2βRT1 − 2βRT2 + 4βTT ,

is the gauge and parametrization invariant in effective QG.

We use the general statement about the gauge-fixing and
parametrization independence of the on-shell effective ac tion.

The difference between the divergences of two versions of th e
one-loop effective action, evaluated using different gaug e and
parametrization parameters αi and α0 is proportional to the
classical equations of motion

δΓ̄
(1)
div = Γ̄

(1)
div (αi)− Γ̄

(1)
div (α0) = − µn−4

(4π)2(n − 4)

∫

dnx
√−g εµν fµν ,

where εµν = Rµν − 1
2

gµνR − κ2

2
T µν .
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Remember Γ̄
(1)
div = − µn−4

n − 4

∫

dnx
√−g

{

β2C2 − 1
3
β0R2

− 2κ2βRT1RµνT µν + κ2βRT2RT + κ4βTT T 2
}

,

Since divergences are local and covariant functionals of th e
mass dimension four, the tensor function fµν has the general
structure

fµν = b1Rµν + b2Rgµν + κ2b3Tµν + κ2b4Tgµν ,

where the parameters b1,2,3,4 depend on the choice of gauge and
parametrization parameters αi . Thus,

δΓ̄
(1)
div = − µn−4

(4π)2(n − 4)

∫

dnx
√−g

{

b1R2
µν −

(

1
2 b1 + b2

)

R2

+ κ2(b3 − 1
2 b1

)

RµνT µν − κ2( 1
2b2 +

1
2b3 + b4

)

RT

− κ4( 1
2 b3 +

1
2b4

)

T 2
}

.
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So, under the gauge and/or parametrization changes, the
coefficients of divergences transform as

c1 → c1, c2 → c2 + b1, c3 → c3 −
(

b1

2
+ b2

)

,

c4 → c4 +

(

b3 −
b1

2

)

, c5 → c5 −
1
2
(b2 + b3 + 2b4) ,

c6 → c6 −
1
2
(b3 + b4) .

It is easy to check that c1 is invariant (this is knows from 70-th),
and that there is the second independent combination

cinv = c2 + c3 + c4 − 2c5 + 4c6.

And this directly implies that

βinv =
4
3
β2 −

1
3
β0 − 2βRT1 − 2βRT2 + 4βTT ,

is invariant under the gauge and parametrization changes in the
QG based on GR.
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We conclude that the method of

[DM] D.A.R. Dalvit and F.D. Mazzitelli, PRD; hep-th/9708102

provides a consistent scheme of calculating QG corrections to
Newtonian potential in the effective framework.

This scheme is more complicated than the derivation of
diagrams (amplitudes), but it excludes the quantization of
the classical source, e.g., astrophysical macroscopic obj ects.

The main feature of the scheme [DM97] is the use of geodesics
as an ultimate element of setting the result on shell.

The implementation of effective approach is that the IR quan tum
corrections to GR are treated as small perturbations. In cas e
loop corrections are treated at the same level as the GR
contribution, the result would be dramatically different.
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Conclusions

• The effective QG is our simplest option for the QG.

• Assuming effective QG means we give up from the main
target of QG, i.e., from the describing QG in the deep UV,
explanation (or removal) of singularities and alike.

• The “standard” object of interest in the effective QG is the
interaction between two macroscopic bodies. The consisten t
approach requires discarding the diagrams with external li nes
of the macroscopic sources.

• In this reduced setting, achieving consistent results is mo re
complicated than usual in QFT owing to the presence of extern al
classical sources. The problem was solved in [DM97] by going
on shell for the massive test particle.

• The numerical effect for the two static bodies is negligible ,
but still represents a great interest as an example of a consi stent
calculation of final observables in QG.
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