

Quantum black holes as classical space factories

Luca Smaldone in collaboration with A. Iorio

Institute of Theoretical Physics, University of Warsaw

Quantum Gravity and Cosmology 2023, 20 April 2023

- 1. Preliminaries: Xons
- 2. The boson method
- 3. Emergence of space and matter
- 4. Conclusions

Preliminaries: Xons

Bekenstein's argument that a black hole (BH) reaches the maximal entropy at disposal of a physical system¹ led to two main proposals:

- The degrees of freedom (dof) responsible for the BH entropy have to take into account both matter and spacetime and hence must be of a new, more fundamental nature than the dof we know, here we call such dof $X \text{ ons}^2$
- The Hilbert space ${\mathcal H}$ of the Xons of a given BH is necessarily finite dimensional^3

¹J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).

²G. Acquaviva, A. Iorio and M. Scholtz, Ann. Phys. **387**, 317 (2017).

³N. Bao, S. M. Carroll and A. Singh, Int. J. Mod. Phys. D **26**, no. 12, 1743013 (2017).

Fermionic Xon model of BH evaporation

- We assume our system has only a finite number N of quantum levels (slots) to be filled (local quantum system)
- We assume that X ons are fermions \Rightarrow Each quantum level can be filled by no more than one fermion $\Rightarrow \dim \mathcal{H} < \infty$.
- Before evaporation, BH state is described by free Xons, which fill all slots.
- Evaporation consists of steady process: $N \to (N-1) \to (N-2) \to \cdots$. That is, the number of *free X*ons steadily decreases
- During evaporation Xons rearrange into quasi-particles and the spacetime they live in \Rightarrow Intrinsic notion of interior (BH) and exterior (environment)⁴.

⁴G. Acquaviva, A. Iorio and L.S., Phys. Rev. D **102**, 106002 (2020).

BH (b)/environment (a) state

$$|\Psi(\sigma)
angle \ = \ \prod_{i=1}^{N} \sum_{n_i=0,1} \ C_i(\sigma) \ \left(a_i^{\dagger}
ight)^{n_i} \ \left(b_i^{\dagger}
ight)^{1-n_i} \ |0
angle_{_{\mathrm{II}}} \otimes |0
angle_{_{\mathrm{II}}}$$

with

$$C_i = (\sin \sigma)^{n_i} (\cos \sigma)^{1-n_i}$$

 σ is an interpolating parameter, which describes the evolution of the system, from $\sigma = 0$ till $\sigma = \pi/2$. \mathcal{H} has dimension

$$\Sigma = 2^N = e^{\mathcal{S}_{max}}$$

- The division of a and b modes is artificial: No explanation of the mechanism behind environment (space and matter) formation!
- A possible solution comes from condensed matter physics: known relation between classical theory of defects and a Einstein–Cartan description of gravity⁵
- Analog models of gravity in Dirac materials⁶
- By using the boson method, classical theory of defects and elasticity theory can be derived by an underlying QFT⁷

⁵M. O. Katanaev and I. V. Volovich, Annals Phys. **216**, 1 (1992)

⁶G. Acquaviva, A. Iorio, P. Pais, and L. Smaldone, Universe 8 (9), 455 (2022)

⁷M. Wadati, H. Matsumoto, and H. Umezawa, Phys. Rev. B 18, 4077 (1978)

We can apply the same idea to our *quasiparticle picture*⁸:

⁸A. Iorio and L. Smaldone, [arXiv:2302.04847 [hep-th]].

The boson method

Field equation

$$\Lambda(\partial) \Psi(x) = j[\Psi](x)$$

 $\Lambda(\partial)$ is a differential operator. Yang–Feldman equation ^9:

$$\Psi(x) = \Psi_0(x) + \left(\Lambda^{-1} \star j[\Psi]\right)(x), \qquad \Lambda(\partial)\Psi_0(x) = 0,$$

 $\Lambda(\partial)\Psi_0 = 0$. Iteratively solved by the dynamical map¹⁰:

$$\Psi(x) = \Psi[x; \Psi_0(x)]$$

⁹C.-N. Yang and D. Feldman, Phys. Rev. **79**, 972 (1950).

 $^{^{10}\}mathrm{H.}$ Umezawa, Advanced field theory: Micro, macro, and thermal physics (AIP, 1993).

Example: Real scalar field

Example: Consider
$$\mathcal{L} = \frac{1}{2}(\partial \Psi)^2 - \frac{m^2}{2}\Psi^2 - V(\Psi)$$
. Then
 $\Lambda(\partial) = \Box + m^2, \qquad j[\Psi] = \frac{\partial V}{\partial \Psi}$

Yang–Feldman equation $(\Psi_0 = \Psi_{in})$

$$\Psi(x) = \sqrt{Z} \Psi_{in}(x) + \int d^4 y \,\Delta_R(x-y) \,j(x)$$

 Δ_R is the retarded propagator. Dynamical map¹¹

$$\Psi(x) = v + \sum_{n=1}^{\infty} \int d^4 x_1 \dots d^4 x_n F_n(x; x_1, \dots, x_n) : \Psi_{in}(x_1) \dots \Psi_{in}(x_n) :$$

$$F_n(x; x_1, \dots, x_n) = Z^{\frac{n+1}{2}} \Lambda_{x_1} \dots \Lambda_{x_n} \langle R[\Psi(x) \Psi(x_1) \dots \Psi(x_n)] \rangle_c$$

¹¹S. S. Schweber, An Introduction to Relativistic Quantum Field Theory

Boson transformation theorem

Consider $\Psi_0[x; \psi(x), \varphi_1(x), \dots, \varphi_N(x)]$. Then

$$\Psi(x) = \Psi[x; \psi(x), \varphi_1(x), \dots, \varphi_N(x)],$$

If φ_j are bosons, we can perform the boson transformation

$$arphi_j(x) \ o \ arphi_j^f(x) \ \equiv \ arphi_j(x) \ + \ f_j(x) \,,$$

 f_j are c-number functions and φ_j^f satisfy the same equations as $\varphi_j.$ Then^{12}

$$\Lambda(\partial)\Psi^f(x) = j\left[\Psi^f\right](x)$$

with $\Psi^f(x) \equiv \Psi[x; \psi(x), \varphi_1^f(x), \dots, \dots, \varphi_N^f(x)]$

 $^{12}\mathrm{H.}$ Matsumoto, N. J. Papastamatiou, and H. Umezawa, Nucl. Phys. B $\mathbf{82},\,45$ (1974)

Solutions with defects

When

$$\left[\partial_{\mu}, \partial_{\nu}\right] f_{j}(x) \neq 0,$$

 Ψ^f describes a solution with topological defects¹³.

System invariant under a Lie group G. Lie algebra generators:

$$[t_a, t_b] = iC_{abc} t^c$$

Spontaneous symmetry breaking (SSB)

$$Q_a |0\rangle \neq 0$$

<u>The φ_{js} will be Nambu–Goldstone (NG) fields</u>. ¹³L. Leplae and H. Umezawa, J. Math. Phys. **10**, 2038 (1969)

Classical gauge field

Boson transformed field¹⁴

$$\Psi^f(x) = U(x) \tilde{\Psi}(x)$$

 $\tilde{\Psi}(x)$ is regular. U[f](x) is a classical gauge transformation of G. Then

$$A_{\mu}(x) = i U^{-1}(x) \partial_{\mu} U(x), \qquad A_{\mu}(x) = t_{a} A_{\mu}{}^{a}(x)$$

and

$$F_{\mu\nu}{}^{a}(x) = \partial_{\mu}A_{\nu}{}^{a}(x) - \partial_{\nu}A_{\mu}{}^{a}(x) + C_{abc}A_{\mu}{}^{b}(x)A_{\nu}{}^{c}(x)$$

are classical gauge fields depending on f.

¹⁴H. Matsumoto, H. Umezawa, and M. Umezawa, Fortsch. Phys. 29, 441 (1981)

Example: The $\lambda \Psi^4$ model

g

$${\cal L}\,=\,\partial_\mu \Psi^\dagger \partial^\mu \Psi - \mu^2 \Psi^\dagger \Psi - {\lambda\over 4} |\Psi^\dagger \Psi|^2$$

SSB when $\mu^2 < 0$ and $\langle \Psi \rangle = v = \sqrt{-2\mu^2/\lambda}$. Take $\Psi(x) \equiv (\rho(x) + v)e^{i\chi(x)}$. Equations of motion

$$\begin{bmatrix} \Box - (\partial_{\mu}\chi)^2 + m^2 \end{bmatrix} \rho + \frac{3}{2}m g \rho^2 + \frac{1}{2}g \rho^3 = v (\partial_{\mu}\chi)^2$$
$$\partial_{\mu} \left[(\rho + v)^2 \partial^{\mu}\chi \right] = 0.$$
$$= \sqrt{\lambda} \text{ and } m^2 = \lambda v^2 > 0.$$

Asymptotic fields choice the equations

$$\left[\Box - (\partial_{\mu}\chi_{in})^{2} + m^{2}\right](\rho_{in} + v) = 0$$
$$\partial_{\mu}\left[(\rho_{in} + v)^{2} \partial^{\mu}\chi_{in}\right] = 0,$$

i.e. $(\Box + m^2) \Psi_{in} = 0$, $\Psi_0 = \Psi_{in} \equiv (\rho_{in} + v) e^{i\chi_{in}}$. Dynamical map¹⁵

$$\Psi(x) = T_C \left\{ (\rho_{in}(x) + v) e^{i\chi_{in}(x)} \exp\left[-i \int_C d^4 y \mathcal{L}^I_{in}(y)\right] \right\}$$

¹⁵M. Blasone, P. Jizba and G. Vitiello, *Quantum Field Theory and Its Macroscopic Manifestations*, (World Scientific, 2011).

The boson method and the vortex solution

C is a closed time-path¹⁶, \mathcal{L}_{in}^{I} is the interaction Lagrangian in Dirac picture. Boson transformation $\chi_{in}(x) \to \chi_{in}^{f}(x) = \chi_{in}(x) - f(x)$. Then

$$\psi^{f}(x) = e^{-if(x)} T_{C} \left\{ (\rho_{in}(x) + v) e^{i\chi_{in}(x)} \exp\left[-i \int_{C} d^{4}y \mathcal{L}_{in}^{I}(y)\right] \right\}$$

Then

$$U(x) = e^{-if(x)}, \qquad A_{\mu}(x) = \partial_{\mu}f(x), \qquad F_{\mu\nu}(x) = [\partial_{\mu}, \partial_{\nu}]f(x)$$

Vortex along z-axis when $f = \theta$ (azimuthal angle).

¹⁶J. Schwinger, J. Math. Phys.2, 407 (1961)

Emergence of space and matter

Emergence of space and matter

E(3) invariant spin model

Spin doublet¹⁷

$$\Psi(x) = \begin{pmatrix} \Psi_{\uparrow}(x) \\ \Psi_{\downarrow}(x) \end{pmatrix}$$

 ${\cal E}(3)$ Lie algebra

$$[P_a, P_b] = 0$$
$$[P_a, J_b] = i\varepsilon_{abc}P_c$$
$$[J_a, J_b] = i\varepsilon_{abc}J_c$$

Consider SSB of such symmetry to a discrete group

¹⁷A. Iorio and L. Smaldone, [arXiv:2302.04847 [hep-th]].

Counting the NG bosons

Redundancy in NG counting if¹⁸

$$\int d^3x \sum_a c_a(x) j_a^0(x) |0\rangle = 0$$

In our case

$$\int \! \mathrm{d}^3 \, x \, j_a(x) |0\rangle \ = \ \int \! \mathrm{d}^3 x \, \varepsilon_{abc} x^b p_c(x) |0\rangle \ + \ \int \! \mathrm{d}^3 x \, \Sigma_a(x) |0\rangle$$

with

$$P_a = \int d^3x p_a(x), \qquad J_a = \int d^3x j_a(x) \qquad S_a = \int d^3x \Sigma_a(x)$$

and $J_a = L_a + S_a$ ¹⁸H. Watanabe and H. Murayama, Phys. Rev. Lett. **110**, 181601 (2013)

Counting the NG bosons (2)

When
$$P_a|0\rangle \neq 0$$
, $S_a|0\rangle = 0$
$$\int d^3 x j_a(x)|0\rangle = \int d^3 x \varepsilon_{abc} x^b p_c(x)|0\rangle$$

and we have 3 NG bosons $X^a(x)$. When $P_a|0\rangle \neq 0$, $S_a|0\rangle \neq 0$, we have 6 NG modes, X^a, Θ^a .

Table 1: Main features of the different SSB phases.

	S 0 angle = 0	S 0 angle eq 0
NG fields	X^a	X^a , Θ^a
$A_i{}^a$	$e_i{}^a \neq \delta_i^a, \omega_i{}^a = 0$	$e_i{}^a \neq \delta_i^a, \omega_i{}^a \neq 0$
$F_{ij}{}^a$	$T_{ij}{}^a \neq 0, R_{il}{}^a = 0$	$T_{ij}{}^a \neq 0, R_{il}{}^a \neq 0$

The case $S_a|0\rangle = 0$

When only $P_a|0\rangle \neq 0$:

 $\Psi(x) = \Psi_0(x) + \dots, \qquad \Psi_0(x) = \Psi_0[x; \psi(x), X^a(x)]$

 ψ is a fermion field (matter-radial mode). Boson transformation

$$X^a(x) \rightarrow X^a_u(x) \equiv X^a(x) + u^a(\mathbf{x})$$

Gauge transformation

$$U(\mathbf{x}) = \exp\left(-i y^a(\mathbf{x}) \mathcal{P}_a\right) \,,$$

 $y^{a}(\mathbf{x})$ is a functional of u, \mathcal{P}_{a} are $(2 \times 2 \text{ matrix})$ generators of translations. We use the indices i, j, k for x^{i} . y^{a} form a set of flat coordinates, while x^{j} are now curvilinear coordinates.

Classical gauge field

$$A_j(\mathbf{x}) = e_j{}^a(\mathbf{x}) \mathcal{P}_a, \qquad e_j{}^a(\mathbf{x}) \equiv \partial_j y^a(\mathbf{x})$$

 $e_j{}^a$ are triads. Metric tensor

$$g_{ij}(\mathbf{x}) \equiv \delta_{ab} \partial_i y^a(\mathbf{x}) \partial_j y^b(\mathbf{x}) = \delta_{ab} e_i{}^a(\mathbf{x}) e_j{}^b(\mathbf{x})$$
(1)

When $[\partial_i, \partial_j] y^a \neq 0$, non-trivial torsion

$$F_{ij}(\mathbf{x}) = T_{ij}{}^a(\mathbf{x}) \mathcal{P}_a, \quad T_{ij}{}^a(\mathbf{x}) = \partial_i e_j{}^a(\mathbf{x}) - \partial_j e_i{}^a(\mathbf{x})$$

Dynamical map of X on field

$$\Psi(x) = \Psi[x; \psi(x), X^a(x), \Theta^a(x)]$$

Boson transformation

$$\begin{aligned} X^{a}(x) &\to X^{a}_{u}(x) &\equiv X^{a}(x) + u^{a}(\mathbf{x}) \\ \Theta^{a}(x) &\to \Theta^{a}_{\theta}(x) &\equiv \Theta^{a}(x) + \theta^{a}(\mathbf{x}) \end{aligned}$$

and

$$\Psi^{u,\theta}(x) = \Psi^{u,\theta}[x;\psi(x), X^a_u(x), \Theta^a_\theta(x)]$$

Geometric tensors from boson transformation

Gauge matrix

$$U(\mathbf{x}) = \exp(-i\theta^a(\mathbf{x}) \mathcal{J}_a - i y^a(\mathbf{x}) \mathcal{P}_a)$$

 \mathcal{P}_a and \mathcal{J}_a form a 2 × 2 matrix representation of the e(3). Gauge field

$$A_j(\mathbf{x}) = \omega_j{}^a(\mathbf{x}) \mathcal{J}_a + e_j{}^a(\mathbf{x}) \mathcal{P}_a$$

 $\begin{aligned} \omega_j{}^a &\equiv \partial_j \theta^a \text{ is the spin connection, } e_j{}^a &\equiv \partial_j y^a \text{ is the triad,} \\ F_{ij}(\mathbf{x}) &= R_{ij}{}^a(\mathbf{x}) \mathcal{J}_a + T_{ij}{}^a(\mathbf{x}) \mathcal{P}_a, \text{ where} \end{aligned}$

$$R^{a}_{ij}(\mathbf{x}) = \partial_{i}\omega_{j}{}^{a}(\mathbf{x}) - \partial_{j}\omega_{i}{}^{a}(\mathbf{x}) + \varepsilon_{abc}\,\omega_{i}{}^{b}(\mathbf{x})\omega_{j}{}^{c}(\mathbf{x})$$
$$T_{ij}{}^{a}(\mathbf{x}) = \partial_{i}e_{j}{}^{a}(\mathbf{x}) - \partial_{j}e_{i}{}^{a}(\mathbf{x}) + \varepsilon_{abc}\,e_{i}{}^{b}(\mathbf{x})\,\omega_{j}{}^{c}(\mathbf{x})$$

Fermion field on curved space

For small u^a , Ψ_0 we use the ansatz

$$\Psi_0(x) = e^{-i[(x^a + X^a(x))\mathcal{P}_a + \Theta_a(x)\mathcal{J}_a]} \psi(x) \,,$$

Then $y^a(x) = x^a + u^a(\mathbf{x})$:

$$\Psi_0^{u,\theta}(x) = e^{-i[(y^a(\mathbf{x}) + X^a(x))\mathcal{P}_a + (\Theta_a(x) + \theta^a(\mathbf{x}))\mathcal{J}_a]} \psi(x) \,.$$

When $\Lambda(\partial) = \gamma^{\mu}\partial_{\mu}$, γ^{μ} being 2 × 2 matrices, and on the X vacuum:

$$i \gamma^{\mu} D_{\mu} \psi(x) = 0, \qquad D_{\mu} = (\partial_{\sigma}, \partial_j + e_j{}^a(\mathbf{x}) \mathcal{P}_a + \omega_j{}^a(\mathbf{x}) \mathcal{J}_a),$$

Conclusions

Conclusions

- BH evaporation can be described by Xons interaction
- In order to explain the emergence of space and matter, we use a continuous (field) approximation
- The boson method gives a convenient tool for studying defects in QFT
- We apply the boson method to a fermion theory with SSB of E(3) symmetry: emergence of classical geometric tensors and QFT equation in curved space
- The method can also be applied to condensed matter systems, as analog gravity models 19

¹⁹A. Iorio and L.S., in preparation

Thank you for the attention!