

## Quantum black holes as classical space factories

Luca Smaldone<br>in collaboration with A. Iorio<br>Institute of Theoretical Physics,<br>University of Warsaw

## Contents

1. Preliminaries: Xons
2. The boson method
3. Emergence of space and matter
4. Conclusions

Preliminaries: Xons

## Bekenstein Bound and Xons

Bekenstein's argument that a black hole ( BH ) reaches the maximal entropy at disposal of a physical system ${ }^{1}$ led to two main proposals:

- The degrees of freedom (dof) responsible for the BH entropy have to take into account both matter and spacetime and hence must be of a new, more fundamental nature than the dof we know, here we call such dof $X$ ons ${ }^{2}$
- The Hilbert space $\mathcal{H}$ of the Xons of a given BH is necessarily finite dimensional ${ }^{3}$

[^0]
## Fermionic Xon model of BH evaporation

- We assume our system has only a finite number $N$ of quantum levels (slots) to be filled (local quantum system)
- We assume that $X$ ons are fermions $\Rightarrow$ Each quantum level can be filled by no more than one fermion $\Rightarrow \operatorname{dim} \mathcal{H}<\infty$.
- Before evaporation, BH state is described by free Xons, which fill all slots.
- Evaporation consists of steady process: $N \rightarrow(N-1) \rightarrow(N-2) \rightarrow \cdots$. That is, the number of free Xons steadily decreases
- During evaporation $X$ ons rearrange into quasi-particles and the spacetime they live in $\Rightarrow$ Intrinsic notion of interior ( BH ) and exterior (environment) ${ }^{4}$.

[^1]
## BH state in $X$ on model

BH (b)/environment (a) state

$$
|\Psi(\sigma)\rangle=\prod_{i=1}^{N} \sum_{n_{i}=0,1} C_{i}(\sigma)\left(a_{i}^{\dagger}\right)^{n_{i}}\left(b_{i}^{\dagger}\right)^{1-n_{i}}|0\rangle_{\mathrm{I}} \otimes|0\rangle_{\mathrm{II}}
$$

with

$$
C_{i}=(\sin \sigma)^{n_{i}}(\cos \sigma)^{1-n_{i}}
$$

$\sigma$ is an interpolating parameter, which describes the evolution of the system, from $\sigma=0$ till $\sigma=\pi / 2$. $\mathcal{H}$ has dimension

$$
\Sigma=2^{N}=e^{\mathcal{S}_{\max }}
$$

## Elastic theory vs from QFT

- The division of $a$ and $b$ modes is artificial: No explanation of the mechanism behind environment (space and matter) formation!
- A possible solution comes from condensed matter physics: known relation between classical theory of defects and a Einstein-Cartan description of gravity ${ }^{5}$
- Analog models of gravity in Dirac materials ${ }^{6}$
- By using the boson method, classical theory of defects and elasticity theory can be derived by an underlying QFT $^{7}$

[^2]
## From Xons to the emergent world: plane

We can apply the same idea to our quasiparticle picture ${ }^{8}$ :
Quasiparticle picture $\left\{\begin{array}{r}\text { Elasticity theory - Classical geometry } \\ \Uparrow \quad(\text { Crystal Gravity) } \\ \text { Quantum field theory of crystal - defects } \\ \Uparrow \quad \text { (Boson method) } \\ \text { Fundamental quantum dynamics (QED, Xons) }\end{array}\right.$

[^3]
## The boson method

## Dynamical map

Field equation

$$
\Lambda(\partial) \Psi(x)=j[\Psi](x)
$$

$\Lambda(\partial)$ is a differential operator. Yang-Feldman equation ${ }^{9}$ :

$$
\Psi(x)=\Psi_{0}(x)+\left(\Lambda^{-1} \star j[\Psi]\right)(x), \quad \Lambda(\partial) \Psi_{0}(x)=0
$$

$\Lambda(\partial) \Psi_{0}=0$. Iteratively solved by the dynamical map ${ }^{10}$ :

$$
\Psi(x)=\Psi\left[x ; \Psi_{0}(x)\right]
$$

[^4]
## Example: Real scalar field

Example: Consider $\mathcal{L}=\frac{1}{2}(\partial \Psi)^{2}-\frac{m^{2}}{2} \Psi^{2}-V(\Psi)$. Then

$$
\Lambda(\partial)=\square+m^{2}, \quad j[\Psi]=\frac{\partial V}{\partial \Psi}
$$

Yang-Feldman equation $\left(\Psi_{0}=\Psi_{i n}\right)$

$$
\Psi(x)=\sqrt{Z} \Psi_{i n}(x)+\int \mathrm{d}^{4} y \Delta_{R}(x-y) j(x)
$$

$\Delta_{R}$ is the retarded propagator. Dynamical map ${ }^{11}$

$$
\begin{aligned}
& \Psi(x)=v+\sum_{n=1}^{\infty} \int \mathrm{d}^{4} x_{1} \ldots \mathrm{~d}^{4} x_{n} F_{n}\left(x ; x_{1}, \ldots, x_{n}\right): \Psi_{i n}\left(x_{1}\right) \ldots \Psi_{i n}\left(x_{n}\right): \\
& F_{n}\left(x ; x_{1}, \ldots, x_{n}\right)=Z^{\frac{n+1}{2}} \Lambda_{x_{1}} \ldots \Lambda_{x_{n}}\left\langle R\left[\Psi(x) \Psi\left(x_{1}\right) \ldots \Psi\left(x_{n}\right)\right]\right\rangle_{c}
\end{aligned}
$$

${ }^{11}$ S. S. Schweber, An Introduction to Relativistic Quantum Field Theory

## Boson transformation theorem

Consider $\Psi_{0}\left[x ; \psi(x), \varphi_{1}(x), \ldots, \varphi_{N}(x)\right]$. Then

$$
\Psi(x)=\Psi\left[x ; \psi(x), \varphi_{1}(x), \ldots, \varphi_{N}(x)\right],
$$

If $\varphi_{j}$ are bosons, we can perform the boson transformation

$$
\varphi_{j}(x) \rightarrow \varphi_{j}^{f}(x) \equiv \varphi_{j}(x)+f_{j}(x)
$$

$f_{j}$ are $c$-number functions and $\varphi_{j}^{f}$ satisfy the same equations as $\varphi_{j}$. Then ${ }^{12}$

$$
\Lambda(\partial) \Psi^{f}(x)=j\left[\Psi^{f}\right](x)
$$

with $\Psi^{f}(x) \equiv \Psi\left[x ; \psi(x), \varphi_{1}^{f}(x), \ldots, \ldots, \varphi_{N}^{f}(x)\right]$
${ }^{12}$ H. Matsumoto, N. J. Papastamatiou, and H. Umezawa, Nucl. Phys. B 82, 45 (1974)

## Solutions with defects

When

$$
\left[\partial_{\mu}, \partial_{\nu}\right] f_{j}(x) \neq 0
$$

$\Psi^{f}$ describes a solution with topological defects ${ }^{13}$.
System invariant under a Lie group $G$. Lie algebra generators:

$$
\left[t_{a}, t_{b}\right]=i C_{a b c} t^{c}
$$

Spontaneous symmetry breaking (SSB)

$$
Q_{a}|0\rangle \neq 0
$$

The $\varphi_{j}$ s will be Nambu-Goldstone (NG) fields.
${ }^{13}$ L. Leplae and H. Umezawa, J. Math. Phys. 10, 2038 (1969)

## Classical gauge field

Boson transformed field ${ }^{14}$

$$
\Psi^{f}(x)=U(x) \tilde{\Psi}(x)
$$

$\tilde{\Psi}(x)$ is regular. $U[f](x)$ is a classical gauge transformation of $G$. Then

$$
A_{\mu}(x)=i U^{-1}(x) \partial_{\mu} U(x), \quad A_{\mu}(x)=t_{a} A_{\mu}^{a}(x)
$$

and

$$
F_{\mu \nu}^{a}(x)=\partial_{\mu} A_{\nu}^{a}(x)-\partial_{\nu} A_{\mu}^{a}(x)+C_{a b c} A_{\mu}^{b}(x) A_{\nu}^{c}(x)
$$

are classical gauge fields depending on $f$.
${ }^{14}$ H. Matsumoto, H. Umezawa, and M. Umezawa, Fortsch. Phys. 29, 441 (1981)

## Example: The $\lambda \Psi^{4}$ model

$$
\mathcal{L}=\partial_{\mu} \Psi^{\dagger} \partial^{\mu} \Psi-\mu^{2} \Psi^{\dagger} \Psi-\frac{\lambda}{4}\left|\Psi^{\dagger} \Psi\right|^{2}
$$

SSB when $\mu^{2}<0$ and $\langle\Psi\rangle=v=\sqrt{-2 \mu^{2} / \lambda}$. Take $\Psi(x) \equiv(\rho(x)+v) e^{i \chi(x)}$. Equations of motion

$$
\begin{aligned}
& {\left[\square-\left(\partial_{\mu} \chi\right)^{2}+m^{2}\right] \rho+\frac{3}{2} m g \rho^{2}+\frac{1}{2} g \rho^{3}=v\left(\partial_{\mu} \chi\right)^{2}} \\
& \partial_{\mu}\left[(\rho+v)^{2} \partial^{\mu} \chi\right]=0 .
\end{aligned}
$$

$g=\sqrt{\lambda}$ and $m^{2}=\lambda v^{2}>0$.

## $i n$-fields and dynamical map

Asymptotic fields choice the equations

$$
\begin{aligned}
& {\left[\square-\left(\partial_{\mu} \chi_{i n}\right)^{2}+m^{2}\right]\left(\rho_{i n}+v\right)=0} \\
& \partial_{\mu}\left[\left(\rho_{i n}+v\right)^{2} \partial^{\mu} \chi_{i n}\right]=0,
\end{aligned}
$$

i.e. $\left(\square+m^{2}\right) \Psi_{i n}=0, \Psi_{0}=\Psi_{i n} \equiv\left(\rho_{i n}+v\right) e^{i \chi_{i n}}$. Dynamical map ${ }^{15}$

$$
\Psi(x)=T_{C}\left\{\left(\rho_{i n}(x)+v\right) e^{i \chi_{i n}(x)} \exp \left[-i \int_{C} d^{4} y \mathcal{L}_{i n}^{I}(y)\right]\right\}
$$

[^5]
## The boson method and the vortex solution

$C$ is a closed time-path ${ }^{16}, \mathcal{L}_{\text {in }}^{I}$ is the interaction Lagrangian in Dirac picture. Boson transformation $\chi_{i n}(x) \rightarrow \chi_{i n}^{f}(x)=\chi_{i n}(x)-f(x)$. Then

$$
\psi^{f}(x)=e^{-i f(x)} T_{C}\left\{\left(\rho_{i n}(x)+v\right) e^{i \chi_{i n}(x)} \exp \left[-i \int_{C} d^{4} y \mathcal{L}_{i n}^{I}(y)\right]\right\}
$$

Then

$$
U(x)=e^{-i f(x)}, \quad A_{\mu}(x)=\partial_{\mu} f(x), \quad F_{\mu \nu}(x)=\left[\partial_{\mu}, \partial_{\nu}\right] f(x)
$$

Vortex along $z$-axis when $f=\theta$ (azimuthal angle).
${ }^{16}$ J. Schwinger, J. Math. Phys.2, 407 (1961)

Emergence of space and matter

## Emergence of space and matter



## $E(3)$ invariant spin model

Spin doublet ${ }^{17}$

$$
\Psi(x)=\binom{\Psi_{\uparrow}(x)}{\Psi_{\downarrow}(x)}
$$

$E(3)$ Lie algebra

$$
\begin{aligned}
{\left[P_{a}, P_{b}\right] } & =0 \\
{\left[P_{a}, J_{b}\right] } & =i \varepsilon_{a b c} P_{c} \\
{\left[J_{a}, J_{b}\right] } & =i \varepsilon_{a b c} J_{c}
\end{aligned}
$$

Consider SSB of such symmetry to a discrete group
${ }^{17}$ A. Iorio and L. Smaldone, [arXiv:2302.04847 [hep-th]].

## Counting the NG bosons

Redundancy in NG counting if ${ }^{18}$

$$
\int \mathrm{d}^{3} x \sum_{a} c_{a}(x) j_{a}^{0}(x)|0\rangle=0
$$

In our case

$$
\int \mathrm{d}^{3} x j_{a}(x)|0\rangle=\int \mathrm{d}^{3} x \varepsilon_{a b c} x^{b} p_{c}(x)|0\rangle+\int \mathrm{d}^{3} x \Sigma_{a}(x)|0\rangle
$$

with

$$
P_{a}=\int \mathrm{d}^{3} x p_{a}(x), \quad J_{a}=\int \mathrm{d}^{3} x j_{a}(x) \quad S_{a}=\int \mathrm{d}^{3} x \Sigma_{a}(x)
$$

and $J_{a}=L_{a}+S_{a}$
${ }^{18}$ H. Watanabe and H. Murayama, Phys. Rev. Lett. 110, 181601 (2013)

## Counting the NG bosons (2)

When $P_{a}|0\rangle \neq 0, S_{a}|0\rangle=0$

$$
\int \mathrm{d}^{3} x j_{a}(x)|0\rangle=\int \mathrm{d}^{3} x \varepsilon_{a b c} x^{b} p_{c}(x)|0\rangle
$$

and we have 3 NG bosons $X^{a}(x)$. When $P_{a}|0\rangle \neq 0, S_{a}|0\rangle \neq 0$, we have 6 NG modes, $X^{a}, \Theta^{a}$.

Table 1: Main features of the different SSB phases.

|  | $S\|0\rangle=0$ | $S\|0\rangle \neq 0$ |
| :---: | :---: | :---: |
| NG fields | $X^{a}$ | $X^{a}, \quad \Theta^{a}$ |
| $A_{i}{ }^{a}$ | $e_{i}{ }^{a} \neq \delta_{i}^{a}, \quad \omega_{i}{ }^{a}=0$ | $e_{i}{ }^{a} \neq \delta_{i}^{a}, \quad \omega_{i}{ }^{a} \neq 0$ |
| $F_{i j}{ }^{a}$ | $T_{i j}{ }^{a} \neq 0, \quad R_{i l}{ }^{a}=0$ | $T_{i j}{ }^{a} \neq 0, \quad R_{i l}{ }^{a} \neq 0$ |

## The case $S_{a}|0\rangle=0$

When only $P_{a}|0\rangle \neq 0$ :

$$
\Psi(x)=\Psi_{0}(x)+\ldots, \quad \Psi_{0}(x)=\Psi_{0}\left[x ; \psi(x), X^{a}(x)\right]
$$

$\psi$ is a fermion field (matter-radial mode). Boson transformation

$$
X^{a}(x) \rightarrow X_{u}^{a}(x) \equiv X^{a}(x)+u^{a}(\mathbf{x})
$$

Gauge transformation

$$
U(\mathbf{x})=\exp \left(-i y^{a}(\mathbf{x}) \mathcal{P}_{a}\right)
$$

$y^{a}(\mathbf{x})$ is a functional of $u, \mathcal{P}_{a}$ are $(2 \times 2$ matrix $)$ generators of translations. We use the indices $i, j, k$ for $x^{i}$. $y^{a}$ form a set of flat coordinates, while $x^{j}$ are now curvilinear coordinates.

## Triads, metric and torsion

Classical gauge field

$$
A_{j}(\mathbf{x})=e_{j}^{a}(\mathbf{x}) \mathcal{P}_{a}, \quad e_{j}^{a}(\mathbf{x}) \equiv \partial_{j} y^{a}(\mathbf{x})
$$

$e_{j}{ }^{a}$ are triads. Metric tensor

$$
\begin{equation*}
g_{i j}(\mathbf{x}) \equiv \delta_{a b} \partial_{i} y^{a}(\mathbf{x}) \partial_{j} y^{b}(\mathbf{x})=\delta_{a b} e_{i}^{a}(\mathbf{x}) e_{j}^{b}(\mathbf{x}) \tag{1}
\end{equation*}
$$

When $\left[\partial_{i}, \partial_{j}\right] y^{a} \neq 0$, non-trivial torsion

$$
F_{i j}(\mathbf{x})=T_{i j}^{a}(\mathbf{x}) \mathcal{P}_{a}, \quad T_{i j}{ }^{a}(\mathbf{x})=\partial_{i} e_{j}^{a}(\mathbf{x})-\partial_{j} e_{i}^{a}(\mathbf{x})
$$

## The case $S_{a}|0\rangle \neq 0$

Dynamical map of Xon field

$$
\Psi(x)=\Psi\left[x ; \psi(x), X^{a}(x), \Theta^{a}(x)\right]
$$

Boson transformation

$$
\begin{aligned}
& X^{a}(x) \quad \rightarrow \quad X_{u}^{a}(x) \equiv X^{a}(x)+u^{a}(\mathbf{x}) \\
& \Theta^{a}(x) \rightarrow \Theta_{\theta}^{a}(x) \equiv \Theta^{a}(x)+\theta^{a}(\mathbf{x})
\end{aligned}
$$

and

$$
\Psi^{u, \theta}(x)=\Psi^{u, \theta}\left[x ; \psi(x), X_{u}^{a}(x), \Theta_{\theta}^{a}(x)\right]
$$

## Geometric tensors from boson transformation

Gauge matrix

$$
U(\mathbf{x})=\exp \left(-i \theta^{a}(\mathbf{x}) \mathcal{J}_{a}-i y^{a}(\mathbf{x}) \mathcal{P}_{a}\right)
$$

$\mathcal{P}_{a}$ and $\mathcal{J}_{a}$ form a $2 \times 2$ matrix representation of the $e(3)$. Gauge field

$$
A_{j}(\mathbf{x})=\omega_{j}^{a}(\mathbf{x}) \mathcal{J}_{a}+e_{j}^{a}(\mathbf{x}) \mathcal{P}_{a}
$$

$\omega_{j}^{a} \equiv \partial_{j} \theta^{a}$ is the spin connection, $e_{j}^{a} \equiv \partial_{j} y^{a}$ is the triad, $F_{i j}(\mathbf{x})=R_{i j}{ }^{a}(\mathbf{x}) \mathcal{J}_{a}+T_{i j}{ }^{a}(\mathbf{x}) \mathcal{P}_{a}$, where

$$
\begin{aligned}
R_{i j}^{a}(\mathbf{x}) & =\partial_{i} \omega_{j}^{a}(\mathbf{x})-\partial_{j} \omega_{i}{ }^{a}(\mathbf{x})+\varepsilon_{a b c} \omega_{i}^{b}(\mathbf{x}) \omega_{j}^{c}(\mathbf{x}) \\
T_{i j}^{a}(\mathbf{x}) & =\partial_{i} e_{j}^{a}(\mathbf{x})-\partial_{j} e_{i}^{a}(\mathbf{x})+\varepsilon_{a b c} e_{i}^{b}(\mathbf{x}) \omega_{j}^{c}(\mathbf{x})
\end{aligned}
$$

## Fermion field on curved space

For small $u^{a}, \Psi_{0}$ we use the ansatz

$$
\Psi_{0}(x)=e^{-i\left[\left(x^{a}+X^{a}(x)\right) \mathcal{P}_{a}+\Theta_{a}(x) \mathcal{J}_{a}\right]} \psi(x),
$$

Then $y^{a}(x)=x^{a}+u^{a}(\mathbf{x})$ :

$$
\Psi_{0}^{u, \theta}(x)=e^{-i\left[\left(y^{a}(\mathbf{x})+X^{a}(x)\right) \mathcal{P}_{a}+\left(\Theta_{a}(x)+\theta^{a}(\mathbf{x})\right) \mathcal{J}_{a}\right]} \psi(x) .
$$

When $\Lambda(\partial)=\gamma^{\mu} \partial_{\mu}, \gamma^{\mu}$ being $2 \times 2$ matrices, and on the $X$ vacuum:

$$
i \gamma^{\mu} D_{\mu} \psi(x)=0, \quad D_{\mu}=\left(\partial_{\sigma}, \partial_{j}+e_{j}{ }^{a}(\mathbf{x}) \mathcal{P}_{a}+\omega_{j}{ }^{a}(\mathbf{x}) \mathcal{J}_{a}\right)
$$

## Conclusions

## Conclusions

- BH evaporation can be described by Xons interaction
- In order to explain the emergence of space and matter, we use a continuous (field) approximation
- The boson method gives a convenient tool for studying defects in QFT
- We apply the boson method to a fermion theory with SSB of $E(3)$ symmetry: emergence of classical geometric tensors and QFT equation in curved space
- The method can also be applied to condensed matter systems, as analog gravity models ${ }^{19}$
$\overline{{ }^{19} \mathrm{~A} \text {. Iorio and L.S., in preparation }}$

Thank you for the attention!


[^0]:    ${ }^{1}$ J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
    ${ }^{2}$ G. Acquaviva, A. Iorio and M. Scholtz, Ann. Phys. 387, 317 (2017).
    ${ }^{3}$ N. Bao, S. M. Carroll and A. Singh, Int. J. Mod. Phys. D 26, no. 12, 1743013 (2017).

[^1]:    ${ }^{4}$ G. Acquaviva, A. Iorio and L.S., Phys. Rev. D 102, 106002 (2020).

[^2]:    ${ }^{5}$ M. O. Katanaev and I. V. Volovich, Annals Phys. 216, 1 (1992)
    ${ }^{6}$ G. Acquaviva, A. Iorio, P. Pais, and L. Smaldone, Universe 8 (9), 455 (2022)
    ${ }^{7}$ M. Wadati, H. Matsumoto, and H. Umezawa, Phys. Rev. B 18, 4077 (1978)

[^3]:    ${ }^{8}$ A. Iorio and L. Smaldone, [arXiv:2302.04847 [hep-th]].

[^4]:    ${ }^{9}$ C.-N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).
    ${ }^{10} \mathrm{H}$. Umezawa, Advanced field theory: Micro, macro, and thermal physics (AIP, 1993).

[^5]:    ${ }^{15}$ M. Blasone, P. Jizba and G. Vitiello, Quantum Field Theory and Its Macroscopic Manifestations, (World Scientific, 2011).

