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Preliminaries: Xons



Bekenstein Bound and Xons

Bekenstein’s argument that a black hole (BH) reaches the maximal
entropy at disposal of a physical system! led to two main proposals:

o The degrees of freedom (dof) responsible for the BH entropy have
to take into account both matter and spacetime and hence must
be of a new, more fundamental nature than the dof we know,
here we call such dof Xons?

e The Hilbert space H of the Xons of a given BH is necessarily

finite dimensional®

1J. D. Bekenstein, Phys. Rev. D 23, 287 (1981).
2G. Acquaviva, A. Torio and M. Scholtz, Ann. Phys. 387, 317 (2017).
3N. Bao, S. M. Carroll and A. Singh, Int. J. Mod. Phys. D 26, no. 12, 1743013

(2017).



Fermionic Xon model of BH evaporation

We assume our system has only a finite number N of quantum
levels (slots) to be filled (local quantum system)

We assume that Xons are fermions = Each quantum level can be
filled by no more than one fermion = dimH < oco.

Before evaporation, BH state is described by free Xons, which fill
all slots.

Evaporation consists of steady process:

N— (N—-1)—= (N —2) — ---. That is, the number of free Xons
steadily decreases

During evaporation Xons rearrange into quasi-particles and the
spacetime they live in = Intrinsic notion of interior (BH) and

exterior (environment)?.

1G.

Acquaviva, A. Torio and L.S., Phys. Rev. D 102, 106002 (2020).



BH state in Xon model

BH (b)/environment (a) state

with
Ci = (sing)™ (cos o) ~™

o is an interpolating parameter, which describes the evolution of the
system, from o = 0 till 0 = 7/2. H has dimension

o= 9N — Swna

t



Elastic theory vs from QFT

The division of a and b modes is artificial: No explanation of the
mechanism behind environment (space and matter) formation!

A possible solution comes from condensed matter physics: known
relation between classical theory of defects and a Einstein—Cartan
description of gravity®

Analog models of gravity in Dirac materials®

By using the boson method, classical theory of defects and
elasticity theory can be derived by an underlying QFT7

SM.
5G.

O. Katanaev and I. V. Volovich, Annals Phys. 216, 1 (1992)
Acquaviva, A. Iorio, P. Pais, and L. Smaldone, Universe 8 (9), 455 (2022)

. Wadati, H. Matsumoto, and H. Umezawa, Phys. Rev. B 18, 4077 (1978)



From Xons to the emergent world: plane

We can apply the same idea to our quasiparticle picture®:

FElasticity theory — Classical geometry
f (Crystal Gravity)
Quasiparticle picture ¢ Quantum field theory of crystal — defects

f (Boson method)

Fundamental quantum dynamics (QED , Xons)

8A. Torio and L. Smaldone, [arXiv:2302.04847 [hep-th]].



The boson method



Dynamical map

Field equation
A@) ¥(z) = j[¥](x)

A(0) is a differential operator. Yang-Feldman equation®:
V() = Vo(a) + (A1 %j[¥]) (),  A@)¥o(a) = 0,

A(0)¥( = 0. Tteratively solved by the dynamical map'?:

U(z) = Vlz; Uo(z)]

9C.-N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).
10H. Umezawa, Advanced field theory: Micro, macro, and thermal physics (AIP,
1993).



Example: Real scalar field
— V(¥). Then
AO) = O+m?,  j¥] = %

Example: Consider £ = £(0V)? — %\PQ

Yang—Feldman equation (Vo = U,,)
V(o) = VZUu(s) + [d'yAn(s )0

AR is the retarded propagator. Dynamical map'!

U(z) =v+ Z /d4:1:1 odz, Fo(mm,...,z) : Yyn(a) ... Uyn(ay)
n=1

Fo(zion,... @) = 27 Agy ... Ay (R[U(2) U(zm) ... U(zn)])e

113, S. Schweber, An Introduction to Relativistic Quantum Field Theory



Boson transformation theorem

Consider Uo[z; (), p1(2), ..., on(z)]. Then

U(z) = \Ij[mﬂl)(x)?@l(x)» s aSON(x)] )

If ; are bosons, we can perform the boson transformation

pi(a) = ef@) = ie) + (@),

f; are c-number functions and cp? satisfy the same equations as ;.
Then!?

AW () = j[¥] ()

with U/ (z) = U[z; (), @{(m), ey Lp{v(x)]

12H. Matsumoto, N. J. Papastamatiou, and H. Umezawa, Nucl. Phys. B 82, 45
(1974)
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Solutions with defects

When

[0, 0] fi(x) # 0,

U/ describes a solution with topological defects!S.

System invariant under a Lie group G. Lie algebra generators:

[taa tb] = icabc t°
Spontaneous symmetry breaking (SSB)

Qal0) # 0

The ¢;s will be Nambu-Goldstone (NG) fields.
13L. Leplae and H. Umezawa, J. Math. Phys. 10, 2038 (1969)

11



Classical gauge field

Boson transformed field™*

U(z) is regular. U[f](z) is a classical gauge transformation of G. Then
Aula) = (U @0, U@),  Au@) = 1o A ()
and
Fu () = 0,4,%x) = 9,4,°(x) + Cape A, () A, °(2)

are classical gauge fields depending on f.

MH. Matsumoto, H. Umezawa, and M. Umezawa, Fortsch. Phys. 29, 441 (1981)

12



Example: The \U* model

L= 09,90" — 12Uty — 2|\IIT\P|2

SSB when p? < 0 and (¥) = v = /—2u2/\. Take
U(z) = (p(z) + v)eX(®) . Equations of motion

3 1
[O—(8,x)% + m*| p+ mgp*+ =gp° =

2 2
O [(p+v)?0"x] = 0.

g=+vXand m? = \v® > 0.

13



in-fields and dynamical map

Asymptotic fields choice the equations
[D — (8#)(”1)2 + m2] (Pm =+ v) =0
a/t [(pm + 71)2 8#)(7?'",] = Oa

ie. (D + m2) Uy = 0, Ug =y, = (pin + v) eX. Dynamical map'®

U(s) = To {(pin(l’) T 1)@ exp [—i / d4ycfn<y>} }

15M. Blasone, P. Jizba and G. Vitiello, Quantum Field Theory and Its
Macroscopic Manifestations, (World Scientific, 2011).

14



The boson method and the vortex solution

C is a closed time-path'®, £I is the interaction Lagrangian in Dirac
picture. Boson transformation y,(z) — X{n(:c) = xin(z) — f(2).
Then

W (2) = e 1O T, {u»m(x) T 0) X exp [ / d4yz:£n<y>] }
JC

Then

Ue) = 7@, Au(2) = 8f(2),  Ful®) = [0,0/(z)

Vortex along z-axis when f = 6 (azimuthal angle).

16]. Schwinger, J. Math. Phys.2, 407 (1961)



Emergence of space and

matter




Emergence of space and matter

MATTER Y/ f,
. : - l\ i
A \ Aoprosimation AL 9 v T
: oy lP[\lj @] Tntormaton, Tonsiomaten \P[\V (P] Riki
L EQ) | SPACE (p
Fundamental level: Xons N .
pproxnma ion
E(3) %DISCRETE GROUP

Emergent level: \ on 9,
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E(3) invariant spin model

Spin doublet!?

E(3) Lie algebra
[Pa, Po) = 0
[Po, Jo) = i€apcPe
[Ja, Jb] = i€abe Je

Consider SSB of such symmetry to a discrete group
17A. Torio and L. Smaldone, [arXiv:2302.04847 [hep-th]].

17



Counting the NG bosons

Redundancy in NG counting if'®

/deZ cal(2) 0(2)[0) =

a

In our case

/d il?]a ‘O /d .’L'Sabcl’ pc |O /dg.’EE |0

with
Pa:/dgxpa(x), J,L:/dg,z:ju(.r) Se = /dBJ:Ea(.r)

and J, = L, + S,
18H. Watanabe and H. Murayama, Phys. Rev. Lett. 110, 181601 (2013)
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Counting the NG bosons (2)

When P,|0) # 0, 8,/0) =0

/d3:vja(:zr)|0> = /d%aabcx”pc(x)lm

and we have 3 NG bosons X?(z). When P,|0) # 0, S,|0) # 0, we have
6 NG modes, X%, ©°.

Table 1: Main features of the different SSB phases.

S0y = 0 5|0y # 0

NG fields X X* . 0°
Aia 67;()‘ 7& 517 wi“ =0 ei“ 7& 5?, wi“ 7é 0
Fy Ty* # 0, Rg® = 0] Ty* # 0, Ry® # 0

19



The case S5,|0) =0

When only P,|0) # 0:
U(r) = Po(z) + ..., Uo(z) = Polz;p(x), X(2)]
1 is a fermion field (matter-radial mode). Boson transformation

X z) —» Xi(z) = X% z) + u(x)

u

Gauge transformation
U(x) = exp(—iy*(x)Pa) ,

y®(x) is a functional of u, P, are (2 x 2 matrix) generators of
translations. We use the indices i, j, k for 2. y® form a set of flat

coordinates, while 27 are now curvilinear coordinates.



Triads, metric and torsion

Classical gauge field
Aj(x) = ¢"(x)Pa, " (x) = 0;y°(x)
e;* are triads. Metric tensor
95(X) = Sap 03y (x) 09" (x) = dap €(x) ¢;°(x) (1)

When [0;, 0;]y* # 0, non-trivial torsion

Fiy(x) = Ty*(x)Pa, Ty"(x) = 0ie;"(x) — 0je;"(x)

21



The case S,[0) #0

Dynamical map of Xon field

U(z) = Wlz;9(z), X*(2), 0%(2)]

Boson transformation

X%(z) + u®(x)

X(z) — Xi(x)
0%z) + 0%(x)

0%z) — 64(z)

and

vl (z) = W0 (), Xi(2), 05 (2)]

22



Geometric tensors from boson transformation
Gauge matrix
U(x) = exp(—i0%x) To — iy*(x) Pa)
P, and J, form a 2 x 2 matrix representation of the e(3). Gauge field
Aj(x) = w*(x)Ta + €%(x)Pa

a — a g N Q] - At a4 — YL \ ] <
w;* = 0;0¢ is the spin connection, ¢;* = 0;y* is the triad,

Fij(x) = Ry*(x) Ja + T3%(x) Pa, where

RZ(X) = alw]“(x) — ajWia(X) + Eabe wlb(X)ch(X)

Ty(x) = Oiej"(x) — 9" (%) + €ane €i” (%) w;(x)

23



Fermion field on curved space

For small u%, ¥y we use the ansatz
\Ifo(T) _ l—i[(ma+xa(z))7>a+(~)a(a:)J,,] 7/}(55) ,
Then y%(z) = z* + u®(x):

VO (g) = e N0 COHX @)Put(@u(2)+0° DTl 4y ()

When A(0) = "0, v" being 2 x 2 matrices, and on the X vacuum:

i"Dup(z) = 0, Dy = (05,9;+ ¢°(x) P+ w;*(x) Ja) ,

24



Conclusions




Conclusions

BH evaporation can be described by Xons interaction

In order to explain the emergence of space and matter, we use a
continuous (field) approximation

The boson method gives a convenient tool for studying defects in
QFT

We apply the boson method to a fermion theory with SSB of
E(3) symmetry: emergence of classical geometric tensors and
QFT equation in curved space

The method can also be applied to condensed matter systems, as
analog gravity models'®

19A

Torio and L.S., in preparation



Thank you for the attention!
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