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Four epochs of the history of the Universe
H ≡ ȧ

a
where a(t) is a scale factor of an isotropic

homogeneous spatially flat universe (a
Friedmann-Lemâitre-Robertson-Walker background):

ds2 = dt2 − a2(t)(dx2 + dy 2 + dz2) + small perturbations

The history of the Universe in one line: four main epochs

? −→ DS=⇒FLRWRD=⇒FLRWMD=⇒DS −→ ?

Geometry

|Ḣ | << H2=⇒ H =
1

2t
=⇒ H =

2

3t
=⇒ |Ḣ | << H2

Physics

p ≈ −ρ =⇒ p = ρ/3 =⇒ p � ρ =⇒ p ≈ −ρ
Duration in terms of the number of e-folds ln(afin/ain)

> 60 ∼ 55 7.5 0.5



CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589



Outcome of inflation
In the super-Hubble regime (k � aH) in the coordinate
representation in the synchronous gauge with some additional
conditions fixing it completely:

ds2 = dt2 − a2(t)(δlm + hlm)dx ldxm, l ,m = 1, 2, 3

hlm = 2ξ(r)δlm +
2∑

a=1

g (a)(r) e(a)
lm

e
l(a)
l = 0, g

(a)
,l e

l(a)
m = 0, e

(a)
lm e lm(a) = 1

ξ = −R describes primordial scalar perturbations, g –
primordial tensor perturbations (gravitational waves (GW)).
The most important quantities:

Pξ(k),
d lnPξ(k)

d ln k
≡ ns(k)− 1, r(k) ≡ Pg

Pξ

Both |ns − 1| and |r | are small during slow-roll inflation.



New cosmological parameters relevant to inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum ns = 1 in
the first order in |ns − 1| ∼ N−1

H has been discovered (using
the multipole range ` > 40):

< R2(r) >=

∫
PR(k)

k
dk , PR(k) = (2.10± 0.03)·10−9

(
k

k0

)ns−1

k0 = 0.05 Mpc−1, ns − 1 = −0.035± 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely ns − 1, relating it finally to
NH = ln kB Tγ

~H0
≈ 67.2. (note that (1− ns)NH ∼ 2).



The most recent upper limits on r
1. BICEP/Keck Collaboration: P. A. R. Ade et al., Phys. Rev.
Lett. 127, 151301 (2021); arXiv:2110.00483:

r 0.05 < 0.036 at the 95% C.L.

2. M. Tristram et al., Phys. Rev. D 105, 083524 (2022);
arXiv:2112.07961:

r 0.05 < 0.032 at the 95% C.L.

For comparison, in the chaotic inflationary model V (ϕ) ∝ |ϕ|n,
r = 4n

N
, 1− ns = n+2

2N
. The r upper bound gives n < 0.5 for

N0.05 = (55− 60), but then 1− ns ≤ 0.022. Thus, this model
is disfavoured by observational data.

The target prediction for r in the 3 simplest (one-parametric)
inflationary models having ns − 1 = − 2

N
(the R + R2, Higgs

and combined Higgs-R2 models) is

r =
12

N2
= 3(ns − 1)2 ≈ 0.004



Kinematic origin of scalar perturbations

Local duration of inflation in terms of Ntot = ln
(

a(tfin)
a(tin)

)
is

different in different points of space: Ntot = Ntot(r). Then
(δN formalism):

ξ(r) = δNtot(r)

Correct generalization to the non-linear case: the space-time
metric after the end of inflation at super-Hubble scales

ds2 = dt2 − a2(t)e2Ntot (r)(dx2 + dy 2 + dz2)

First derived in A. A. Starobinsky, Phys. Lett. B 117, 175

(1982) in the case of one-field inflation.



Visualizing small differences in the number of

e-folds
Duration of inflation in terms of e-folds was finite for all points
inside our past light cone. For ` . 50, neglecting the Silk and
Doppler effects, as well as the ISW effect due the presence of
dark energy,

∆T (θ, φ)

Tγ
= −1

5
ξ(rLSS , θ, φ) = −1

5
δNtot(rLSS , θ, φ)

For ns = 1,Pξ = P0,

`(` + 1) 〈(∆T/Tγ)2
lm〉 =

2π

25
P0

For ∆T
T
∼ 10−5, δN ∼ 5× 10−5, and for H ∼ 1014 GeV, like in

the minimal (one-parametric) inflationary models, δt ∼ 5tPl !

Planck time intervals are seen by the naked eye!



Before inflation
Different possibilities were considered historically. The two
simplest possibilities occurring in classical (possibly modified)
gravity already.
1. Quasi-isotropic bounce of the scale factor with bounded
curvature not exceeding that during inflation.
2. Generic anisotropic and inhomogeneous singularity with
curvature much exceeding that during inflation.

A specific intermediate case: de Sitter ’Genesis’: beginning
from the exact contracting full de Sitter space-time at
t → −∞ (AS, PLB 91, 99 (1980)).
Requires adding an additional term

R l
i R

k
l −

2

3
RRk

i −
1

2
δk

i RlmR
lm +

1

4
δk

i R
2

to the rhs of the gravitational field equations. Not generic.
May not be the ’ultimate’ solution: a quantum system may
not spend an infinite time in an unstable state.



Other more speculative possibilities

1. Creation of inflation ”from nothing” (Grishchuk and
Zeldovich, 1981).
One possibility among infinite number of others.

2. Our Universe was not an individual entity before inflationary
stage, it was a part of some ”Superuniverse” (”Multiverse” in
modern terminology) (AS, Quantum Gravity, 1981).

3. More generally, any process may be responsible for the
formation of inflationary stage in our Universe, that was called
”creation from anything” in AS and Ya. B. Zeldovich, Sov.
Sci. Rev. 1988.
Possible relation to de Sitter entropy.



Isotropic bounce with positive spatial curvature
Does not require modified gravity. Rather natural before
inflationary stage since even a very small positive spatial
curvature at present becomes important sufficiently early
during inflation. The simplest model: closed FLRW universe
filled by a massive scalar field (AS, Sov. Astron. Lett. 4, 82
(1978)). Also the ’slow roll’ approximation presently used in
all viable inflationary models was first introduced in this paper
as ’slow climb’ before bounce, t− < t < tb, and ’slow roll’
after bounce at tb < t < t+.

ln
a

a±
= −m2(t − t±)2

6
, φ = −

√
2

3

m(t − t±)

κ
sgn H

κ2 = 8πG , m|t − t±| � 1, κ|φ| � 1, ma± � 1, maκ|φ| � 1

Generic, but probability of bounce and subsequent inflation is
small for a large initial universe size W ∼ 1/(ma−). Difficult
to reach this from a low curvature state (”inflationary points”).



Isotropic bounce with zero spatial curvature in

scalar-tensor gravity

D. Polarski, A. A. Starobinsky, Y. Verbin. Bouncing
cosmological isotropic solutions in scalar-tensor gravity. JCAP
2022, 052 (2022); arXiv:2111.07319.
In contrast to GR, scalar-tensor gravity admits breaking of
weak and null energy conditions, so isotropic bounce is
possible even in the absence of spatial curvature.

S =

∫
d4x
√
−g
(

R

2κ2
+

1

2
∂µΦ∂µΦ− U(Φ)− ξ

2
RΦ2

)

Bouncing solutions have been found for polynomial U(φ)
negative in some range but bounded from below.



However, in all solutions either the Hubble function H(t)
becomes divergent at some finite moment of time before the
bounce, or the effective gravitational constant
Geff = G/(1− ξκ2Φ2) becomes negative around the bounce.

As was shown in AS, Sov. Astron. Lett. 7, 36 (1981), in such
solutions, arbitrarily small anisotropic perturbations diverge in
the point there G−1

eff = 0 and this results in the formation of
generic anisotropic and inhomogeneous singularity at this
moment preventing the transition to the region where Geff is
negative.



Bianchi-I type models in f (R) gravity
Analytical and numerical investigation for f (R) = R + R2

gravity in the Bianchi-I type model in D. Muller,
A. Ricciardone, A. A. Starobinsky and A. V. Toporensky, Eur.
Phys. J. C 78, 311 (2018). Two main types of singularities in
f (R) gravity with the same generic structure at t → 0:

ds2 = dt2−
3∑

i=1

|t|2pi a
(i)
l a(i)

m dx ldxm, 0 < s ≤ 3/2, u = s(2−s)

where pi < 1, s =
∑

i pi , u =
∑

i p
2
i and a

(i)
l , pi are

functions of r. Here R2 � RαβR
αβ.

Type A. 1 ≤ s ≤ 3/2, |f ′(R)| ∝ |t|1−s → +∞ .
Type B. 0 < s < 1, R → R0 < 0, f ′(R0) = 0 .
In addition, there can exist an isotropic Big Rip type
singularity with s = −3(n − 1)(2n − 1)/(n − 2), u = s2/3 in
the future evolution if f (R) ∝ Rn, n > 2 for R →∞.



Bianchi-I type models with inflation in R2 gravity

For f (R) = R2, even an exact solution can be found.

ds2 = tanh2α

(
3H0t

2

)(
dt2 −

3∑
i=1

a2
i (t)dx2

i

)

ai (t) = sinh1/3(3H0t) tanhβi

(
3H0t

2

)
,
∑

i

βi = 0,
∑

i

β2
i <

2

3

α2 =
2
3
−
∑

i β
2
i

6
, α > 0

Next step: relate arbitrary functions of spatial coordinates in
the generic solution near a curvature singularity to those in the
quasi-de Sitter solution. Spatial gradients may become
important for some period before the beginning of inflation.



The same structure of generic singularity for a non-minimally
coupled scalar field (scalar-tensor gravity)

S =

∫ (
f (φ)R +

1

2
φ,µφ

,µ − V (φ)

)√
−g d4x + Sm

f (φ) =
1

2κ2
− ξφ2

Type A. ξ < 0, |φ| → ∞ .
Type B. ξ > 0, |φ| → 1/

√
2ξκ .

The asymptotic regimes and a number of exact solutions in
the Bianchi type I model are presented in A. Yu. Kamenshchik,
E. O. Pozdeeva, A. A. Starobinsky, A. Tronconi, G. Venturi
and S. Yu. Vernov, Phys. Rev. D 97, 023536 (2018) with
some of them borrowed from A. A. Starobinsky, MS Degree
thesis, Moscow State University, 1972, unpublished.
Anisotropy grows towards singularity generically like in GR.



Horndeski gravity
Generalization of scalar-tensor gravity in the scalar sector
without introducing new (scalar) degrees of freedom.

S =

∫
(L2 + L3 + L4 + L5)

√
−g d4x ,

L2 = G2(φ,X ), L3 = −G3(φ,X )�φ ,

L4 = G4(φ,X )R + G4X (φ,X )
[
(�φ)2 − (∇µ∇νφ)2

]
,

L5 = G5(φ,X )Gµν ∇µ∇νφ− 1

6
G5X (φ,X )×

×
[

(�φ)3 − 3�φ(∇µ∇νφ)2 + 2 (∇µ∇νφ)3
]
.

Here X = −1
2
∇µφ∇µφ, GAX ≡ ∂GA/∂X . R and Gµν are the

Ricci scalar and the Einstein tensor, R = −Gµ
µ .



Specific types of Horndeski gravity

1. G2 = X − V (φ), G3 = G5 = 0, G4 = const - GR + a
self-interacting scalar field minimally coupled to gravity.
2. G2 = X − V (φ), G3 = G5 = 0, G4 = G4(φ) - scalar-tensor
gravity.
3. G2 = G2(φ,X ), G3 = G5 = 0, G4 = const - K -essence
theory.
4. G3(φ,X ) 6= 0 - Kinetic Gravity Braiding (KGB) theory.

The theory with G4 = G4(φ), G5 = 0 is the most general
Horndeski model in which the sound speed of tensor
perturbations is exactly equal to the speed of light in the
presence of the scalar field φ. However, we will not restrict
ourselves to this constraint.



Bianchi-I type solutions of Horndeski gravity
R. Galeev, R. Muharlyamov, A. A. Starobinsky, S. V. Sushkov
and M. S. Volkov, Phys. Rev. D 103, 104015 (2021);
arXiv:2102.10981.

The Bianchi-I type metric:

ds2 = −dt2 + a2
1 dx2

1 + a2
2 dx2

2 + a2
3 dx2

3 .

Parametrization of the three scale factors:

a1 = a eβ++
√

3β− , a2 = a eβ+−
√

3β− , a3 = a e−2β+ .

Let us denote

G = 2G4 − 2G4X φ̇
2 + G5φφ̇

2 , σ2 = β̇2
+ + β̇2

− , H =
ȧ

a
,

H1 = H + β̇+ +
√

3β̇− , H2 = H + β̇+−
√

3β̇− , H3 = H−2β̇+ .



4 equations for 4 variables

The field equation:

1

a3
d

dt
(a3J ) = P ,

J = φ̇
[
G2X − 2G3φ + 3Hφ̇(G3X − 2G4Xφ) + +G 0

0 (−2G4X−

−2φ̇2G4XX + 2G5φ + G5Xφφ̇
2) + H1H2H3(3G5X φ̇ + G5XX φ̇

3)
]
,

P = G2φ− φ̇2(G3φφ +G3Xφφ̈) +RG4φ + 2G4Xφφ̇(3φ̈H − φ̇G 0
0 )+

+G 0
0G5φφφ̇

2 + G5Xφφ̇
3H1H2H3 .



The first order G 0
0 equation:

3
(
H2 − σ2

) (
G − 2G4X φ̇

2 − 2G4XX φ̇
4 + 2G5φφ̇

2 + G5Xφφ̇
4
)

=

= −G2 + φ̇2G2X + 3G3XHφ̇
3−G3φφ̇

2− 6G4φHφ̇− 6G4XφHφ̇
3+

+φ̇3(5G5X + G5XX φ̇
2)(H − 2β̇+)

[
(H + β̇+)2 − 3β̇2

−
]
.

Two first order equations for anisotropy factors:

Gβ̇+ + G5X φ̇
3
(
β̇2
− − β̇2

+ − H β̇+

)
=

C+

a3
,

Gβ̇− + G5X φ̇
3
(

2β̇+β̇− − H β̇−
)

=
C−
a3

.



Behaviour of anisotropy towards curvature

singularity

Anisotropy grows towards singularity like in GR in models
where G4 = G4(φ), G5 = 0. However, if G4 = G4(X ), or
G5 = G5(X ), it grows first but then decrease. This effect was
first found earlier in A. A. Starobinsky, S. V. Sushkov and
M. S. Volkov, Phys. Rev. D 101, 064039 (2020);
arXiv:1912.12320 for the specific case G5 = const. Such
models show gradient instabilities at early times (c2

s , or c2
t , or

both become negative). Thus, their initial phase, although not
anisotropic, cannot be isotropic either. It should therefore be
inhomogeneous. At the same time, it is possible that a
systematic analysis of theories with more general G4(φ,X )
and/or G5(φ,X ) may reveal models free of instabilities.



Conclusions

I Duration of inflationary stage inside our past light-cone
was finite. Moreover, we directly see the difference of this
duration in terms of the number of its e-folds between
different points at the LSS from the large-scale CMB
temperature anisotropy.

I In contrast to the inflationary stage itself, at present we
have no reliable and unambiguous observational data
regarding previous history of our Universe before inflation.

I Among many possible variants of the pre-inflationary
history, the two simplest and most conservative
alternatives are quasi-isotropic bounce due to positive
spatial curvature in some finite region of space, or generic
anisotropic singularity with curvature much exceeding
that during the observable part of inflation.



I With a positive spatial curvature, generic bounce of an
isotropic homogeneous universe is possible. Moreover, the
assumption of homogeneity can be omitted: it is sufficient
that spatial curvature is positive in some finite region of
space only. Then only a small part of a collapsing
universe (”inflationary points”) bounces and inflate after
that. Asymmetry between past and future due to global
inhomogeneity as a result of this (a kind of ”time arrow”).

I In scalar-tensor gravity with U(φ) negative in some range
but bounded from below, isotropic bouncing solutions
with a finite Hubble function H(t) are possible even in
the absence of spatial curvature, but they require Geff

becoming negative around the bounce and, thus, are
unstable with respect to the formation of generic and
inhomogeneous curvature singularity at the moment when
G−1

eff = 0. Thus, they are unphysical.



I In scalar-tensor or f (R) gravity, generic asymptotic
behaviour near singularity is quasi-regular (finite number
of BLH oscillations) with R2 � RαβR

αβ.

I In Horndeski gravity, anisotropy behaviour near singularity
may be completely different from that in GR for models
in which the GW velocity in presence of the scalar field is
different from the light one, though this difference may be
arbitrarily small at present. Moreover, even the structure
of the curvature singularity itself may be different.
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