Remembrance of Things Past

Richard Woodard (University of Florida, USA)

Quantum Gravity & Cosmology (April 19, 2023)

Based on arXiv:2110.08715 (Miao & Tsamis), 2302.04808 (Kasdagli & Ulloa) & 2302.11528 (Yesilyurt)

Inflationary Production of Scalars & Gravitons

•
$$ds^2 = -dt^2 + a^2(t)d\vec{x} \cdot d\vec{x}$$
 \rightarrow $H(t) = \frac{\dot{a}}{a}$, $\epsilon(t) = -\frac{\dot{H}}{H^2}$
• Inflation is $H > 0$ & $0 \le \epsilon < 1$ de Sitter $\rightarrow \epsilon = 0$, $\dot{H} = 0$, $a = e^{Ht}$

• Inflation produces LOT of infrared scalars & gravitons

•
$$N_S\left(t,\vec{k}\right) = \frac{\pi\Delta_R^2(k)}{4Gk^2} \times \epsilon(t)a^2(t)$$
 , $N_h\left(t,\vec{k}\right) = \frac{\pi\Delta_h^2(k)}{32Gk^2} \times a^2(t)$

- Interactions of these particles induce large logarithms
- E.g. $\mathcal{L} = -\frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi g^{\mu\nu} \sqrt{-g} \frac{\lambda}{4!} \Phi^{4}$ on de Sitter • $\langle \Omega | T_{\mu\nu} | \Omega \rangle = p \times g_{\mu\nu} + (\rho + p) u_{\mu} u_{\nu}$ • $\rho = \frac{H^{4}}{32\pi^{2}} \left\{ -3 + \frac{\lambda}{4\pi^{2}} \left[\ln(a) \right]^{2} + O(\lambda^{2}) \right\}$ $p = \frac{H^{4}}{32\pi^{2}} \left\{ +3 - \frac{\lambda}{4\pi^{2}} \left[\left[\ln(a) \right]^{2} + \frac{2}{3} \ln(a) \right] + O(\lambda^{2}) \right\}$
- "Leading Logarithm" at order λ^N is $[\ln(a)]^{2N}$, lower powers are "sub-leading"

Large Logs from Loops of Inflationary Gravitons

- Scalar effects are *simpler*, but graviton effects are *generic*
- Gravitons can also do things scalars cannot because of spin
 - Provides an interaction which does not redshift
- GR + EM (arXiv:1308.3453 & 1408.1448)

•
$$\Phi(t,r) = \frac{Q}{4\pi a r} \left\{ 1 + \frac{2G}{3\pi a^2 r^2} + \frac{2GH^2}{\pi} \ln(aHr) + \cdots \right\}$$

•
$$F^{0i}(t, \vec{x}) = F_0^{0i}(t, \vec{x}) \left\{ 1 + \frac{2GH^2}{\pi} \ln(a) + \cdots \right\}$$

Pure GR (arXiv:2107.13905 & 2206.11467)

•
$$u(t,k) = u_0(t,k) \left\{ 1 + \frac{16GH^2}{3\pi} \ln(a)^2 + \cdots \right\}$$

• $\Psi(t,r) = -\frac{GM}{ar} \left\{ 1 + \frac{103G}{15\pi a^2 r^2} - \frac{8GH^2}{\pi} \left[\ln(a)^3 - 3\ln(a)\ln(Hr) \right] + \dots \right\}$

- Perturbation theory breaks down for $GH^2 \times \ln(a)^{\#} \sim 1$
 - Evolve later by summing series of leading logarithms
 - Late time effects requires formalism for general a(t) with primordial inflation

Starobinsky's Stochastic Formalism

- Works for scalar potential models
 - $\mathcal{L} = -\frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi g^{\mu\nu} \sqrt{-g} V(\Phi) \sqrt{-g}$ • Recall $V(\Phi) = \frac{\lambda}{4!} \Phi^4$ $\rightarrow \rho(t) = \frac{H^4}{32\pi^2} \left\{ -3 + \frac{\lambda}{4\pi^2} [\ln(a)]^2 + O(\lambda^2) \right\} \rightarrow \frac{3\Gamma(\frac{3}{4})H^4}{8\pi^2\Gamma(\frac{1}{4})}$
- Replace Heisenberg field equation for Φ with Langevin equation for φ
 - $\partial_{\mu} \left[\sqrt{-g} \ g^{\mu\nu} \partial_{\nu} \Phi \right] = \sqrt{-g} \ V'(\Phi)$ $\rightarrow 3H(\dot{\varphi} \dot{\varphi}_0) = -V'(\varphi)$
 - "Stochastic jitter" $\varphi_0(t, \vec{x}) \equiv \int \frac{d^3k}{(2\pi)^3} \theta(k-H) \theta(Ha-k) \left\{ \frac{H}{\sqrt{2k^3}} e^{i\vec{k}\cdot\vec{x}} \alpha(\vec{k}) + \frac{H}{\sqrt{2k^3}} e^{-i\vec{k}\cdot\vec{x}} \alpha^{\dagger}(\vec{k}) \right\}$
 - Correlators of $\varphi(t,\vec{x})$ produce the same leading logs as $\Phi(t,\vec{x})$ to ALL ORDERS
 - Can also get late time limit when one is approached \rightarrow $\rho(t) \rightarrow \frac{3\Gamma(\frac{3}{4})H^4}{8\pi^2\Gamma(\frac{1}{4})}$
- Integrate to Yang-Feldman Equation, IR truncate, then differentiate
 - $\Phi(t,\vec{x}) = \Phi_0(t,\vec{x}) \int d^4x' \sqrt{-g(t',\vec{x}')} i\theta(t-t') [\Phi_0(t,\vec{x}),\Phi_0(t',\vec{x}')] V'(\Phi(t,\vec{x}))$ • $\Phi_0(t,\vec{x}) = \int \frac{d^3k}{(2\pi)^3} \{ u(t,k)e^{i\vec{k}\cdot\vec{x}}\alpha(\vec{k}) + u^*(t,k)e^{-i\vec{k}\cdot\vec{x}}\alpha^{\dagger}(\vec{k}) \}$
 - Every Φ_0 must contribute an IR log to reach leading logarithm ightharpoonup can IR truncate Φ_0 to φ_0
 - Differentiating gives Starobinsky's Langevin equation!
- Derivative interactions prevent some Φ_0 's from contributing an IR log
 - Fundamental interaction of GR is $\sqrt{16\pi G} \times h\partial h\partial h$

Applying it to Nonlinear Sigma Models on de Sitter

Single Field Model (unit S-matrix but interesting background & kinematics)

•
$$\mathcal{L} = -\frac{1}{2} \left(1 + \frac{\lambda}{2} \Phi \right)^2 \partial_{\mu} \Phi \partial_{\nu} \Phi g^{\mu\nu} \sqrt{-g}$$

• $\frac{\delta S}{\delta \Phi} = \left(1 + \frac{\lambda}{2} \Phi \right) \partial_{\mu} \left[\left(1 + \frac{\lambda}{2} \Phi \right) \sqrt{-g} g^{\mu\nu} \partial_{\nu} \Phi \right] = 0$

• Integrate out differentiated fields in constant background from interaction

•
$$\Phi(x) = \Phi_0$$
 \rightarrow $\langle \Omega | \Phi(x) \Phi(x') | \Omega \rangle = \frac{i\Delta(x;x')}{\left(1 + \frac{\lambda}{2}\Phi_0\right)^2}$

•
$$-V'_{\rm eff}(\Phi_0)\sqrt{-g} \equiv \left(1 + \frac{\lambda}{2}\Phi_0\right)\partial_\mu \left[\frac{\lambda}{4}\sqrt{-g}g^{\mu\nu}\partial_\nu\langle\Omega|\Phi^2|\Omega\rangle\right] \rightarrow \frac{3\lambda H^4}{16\pi^2}\frac{\sqrt{-g}}{1+\frac{\lambda}{2}\Phi_0}$$

• $V_{\rm eff}(\Phi) = \frac{3H^4}{8\pi^2} \ln \left| 1 + \frac{\lambda}{2} \Phi \right|$ a scalar potential model! \rightarrow use Starobinsky

•
$$\left(1 + \frac{\lambda}{2}\Phi\right)\partial_{\mu}\left[\left(1 + \frac{\lambda}{2}\Phi\right)\sqrt{-g}g^{\mu\nu}\partial_{\nu}\Phi\right] = -V'_{\text{eff}}(\Phi)\sqrt{-g}$$
 \Rightarrow $3H(\dot{\varphi} - \dot{\varphi}_0) = -\frac{V'_{\text{eff}}(\varphi)}{\left(1 + \frac{\lambda}{2}\varphi\right)^2}$

VEV shows ``classical" roll-down accelerated by stochastic jitter

•
$$\langle \Omega | \Phi | \Omega \rangle = \frac{2}{\lambda} \left\{ \left[1 - \frac{\lambda^2 H^2}{8\pi^2} \ln(a) \right]^{1/4} - 1 \right\} - \frac{3\lambda^3 H^4}{2^8 \pi^4} \ln(a)^2 + O(\lambda^5)$$

Curvature-Dependent Renormalizations

- Some large logarithms come from the UV
 - (Primitive = $\frac{1}{D-4}$) (Counterterm = $\frac{a^{D-4}}{D-4}$) = $-\ln(a) + O(D-4)$
 - Doesn't happen for scalar potential models whose leading logs are UV finite
- UV logs are captured by the RG
- Two Field Model: $\mathcal{L} = -\frac{1}{2}\partial_{\mu}A\partial_{\nu}Ag^{\mu\nu}\sqrt{-g} \frac{1}{2}\left(1 + \frac{\lambda}{2}A\right)^{2}\partial_{\mu}B\partial_{\nu}Bg^{\mu\nu}\sqrt{-g}$
 - $\Delta \mathcal{L} = -\frac{1}{2}C_{B1} \square B \square B \sqrt{-g} \frac{1}{2}C_{B2}R\partial_{\mu}B\partial_{\nu}Bg^{\mu\nu}\sqrt{-g}$
 - The \mathcal{C}_{B1} term intrinsically HD, but the \mathcal{C}_{B2} term is $\delta Z_B = \mathcal{C}_{B2} R$
 - $C_{B2} = \frac{\lambda^2 \mu^{D-4}}{4(4\pi)^{D/2}} \frac{\Gamma(D-1)}{\Gamma(\frac{D}{2})} \frac{\pi \cot(\frac{D\pi}{2})}{D(D-1)} \frac{\lambda^2 \mu^{D-4}}{32\pi^{D/2}} \frac{\Gamma(\frac{D}{2}-1)}{2(D-3)(D-4)} \left(\frac{D-2}{D-1}\right)$
 - $\gamma_B \equiv \frac{\partial \ln(1+\delta Z_B)}{\partial \ln(\mu^2)} = -\frac{\lambda^2 H^2}{32\pi^2} + O(\lambda^4)$ and $\beta = O(\lambda^5)$
- Callan-Symanzik Equation
 - $\left[\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial \lambda} 2\gamma_B\right] P_B(t,r) = 0$ and $P_B(t,r) \to \frac{KH}{4\pi} \ln(Hr) + O(\lambda^2)$
 - $\mu \to r$ $\rightarrow P_B(t,r) \to \frac{KH}{4\pi} \ln(Hr) \left\{ 1 \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4) \right\}$

Large Logarithms in Nonlinear Sigma Models Stochastic and Renormalization Group

Single Field Model

Double Field Model

	Quantity	Leading Logarithms	Quantity	Leading Logarithms
Ļ	eguarierey	Deading Dogarithms	$u_A(\eta,k)$	$\left\{1-\frac{\lambda^2 H^2}{32\pi^2}\ln(a) + O(\lambda^4)\right\} \times \frac{H}{\sqrt{2k^3}}$
	$u_{\Phi}(\eta,k)$	$\left\{1+\frac{\lambda^2H^2}{32\pi^2}\ln(a)+O(\lambda^4)\right\}\times\frac{H}{\sqrt{2k^3}}$	$u_B(\eta, k)$	$\left\{1 + 0 + O(\lambda^4)\right\} \times \frac{H}{\sqrt{2k^3}}$
\vdash	$P_{\Phi}(\eta,r)$	$\left\{1 + \frac{\lambda^2 H^2}{32\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$	$P_A(\eta,r)$	$\left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(a) + \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$
			$P_B(\eta,r)$	$\left\{1 - \frac{\lambda^2 H^2}{32\pi^2} \ln(Hr) + O(\lambda^4)\right\} \times \frac{KH}{4\pi} \ln(Hr)$
\vdash	$\langle \Omega \Phi(x) \Omega \rangle$	$\int_{1} \frac{15\lambda^2 H^2}{10} \ln(a) + O(\lambda^4) \frac{\lambda^2 H^2}{10} \ln(a)$	$\langle \Omega A(x) \Omega \rangle$	$\left\{1 + \frac{\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{\lambda H^2}{16\pi^2} \ln(a)$
			$\langle \Omega A^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 - \frac{\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$
	$\langle \Omega \Phi^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 + \frac{15\lambda^2 H^2}{64\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$	$\langle \Omega B(x) \Omega \rangle$	0
($\langle \Omega B^2(x) \Omega \rangle_{\rm ren}$	$\left\{1 + \frac{3\lambda^2 H^2}{32\pi^2} \ln(a) + O(\lambda^4)\right\} \times \frac{H^2}{4\pi^2} \ln(a)$

How It Works for Gravity

- Curvature-Dependent Induced Stress Tensor

 - Analog of constant scalar is constant $h_{\mu\nu}$ \rightarrow constant $\tilde{g}_{\mu\nu} \equiv \eta_{\mu\nu} + \kappa h_{\mu\nu}$ But $g_{\mu\nu} = a^2 \tilde{g}_{\mu\nu}$ with constant $\tilde{g}_{\mu\nu}$ is de Sitter with $H^2 \rightarrow -\tilde{g}^{00} H^2$!

$$\Gamma^{\rho}_{\mu\nu} = aH \left(\delta^{\rho}_{\mu} \delta^{0}_{\nu} + \delta^{\rho}_{\nu} \delta^{0}_{\mu} - \tilde{g}^{0\rho} \tilde{g}_{\mu\nu} \right) \rightarrow R^{\rho}_{\sigma\mu\nu} = -\tilde{g}^{00}H^{2} \left(\delta^{\rho}_{\mu} g_{\sigma\nu} - \delta^{\rho}_{\nu} g_{\sigma\mu} \right)$$

- Can use the same relations to intégrate out differentiated fields!
- E.g. $T_{\mu\nu} = \partial_{\mu}\varphi\partial_{\nu}\varphi \frac{1}{2}g_{\mu\nu}g^{\rho\sigma}\partial_{\rho}\varphi\partial_{\sigma}\varphi \rightarrow \frac{3}{32\pi^2} \left[-\tilde{g}^{00}H^2\right]^2 g_{\mu\nu}$
- NB a negative contribution to the cosmological constant & arbitrarily large
- Curvature-Dependent Renormalizations
 - 1-loop counterterms are $C^{\alpha\beta\gamma\delta}C_{\alpha\beta\gamma\delta} \& R^2$
 - $C^{\alpha\beta\gamma\delta}C_{\alpha\beta\nu\delta}$ is fundamentally higher-derivative \Rightarrow irrelevant for large logs
 - But R^2 induces curvature-dependent renormalizations of $G \& \Lambda = (D-1)H^2$ $R^2 = [R-D\Lambda]^2 + 2D\Lambda[R-(D-2)\Lambda] + D(D-4)\Lambda^2$

Facilitating the Stochastic Formalism

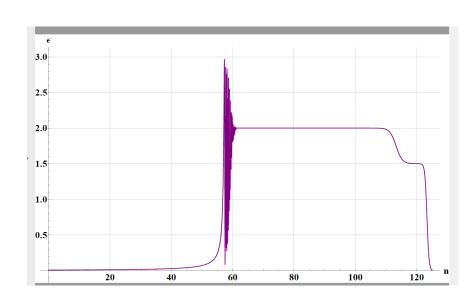
- Need coincident free propagator & 2 derivatives for cosmology
 - $A(t) \equiv i\Delta(x;x)$, $B_{\mu}(t) \equiv \partial_{\mu}i\Delta(x;x')_{x'=x}$, $C_{\mu\nu}(t) \equiv \partial_{\mu}\partial_{\nu}'i\Delta(x;x')_{x'=x}$
 - $ds^2=-dt^2+a^2(t)d\vec{x}\cdot d\vec{x}$ (primordial inflation) $H(t)\equiv \frac{\dot{a}}{a}$, $\epsilon(t)\equiv -\frac{\dot{H}}{H^2}$
- Single scalar model $\Rightarrow V_{\rm eff}(\Phi) = -\frac{1}{2} \Box A \times \ln \left(1 + \frac{\lambda}{2} \Phi\right)$
 - Can at least solve numerically provided A(t) is known
- Get everything from A(t)
 - $B_{\mu}(t) = \frac{1}{2} \partial_{\mu} A(t)$
 - $g^{\mu\nu}C_{\mu\nu} = \frac{1}{2}\Box A$ & other independent component from conservation

Develop analytic approximations Assuming primordial inflation

Typically three epochs

- "Inflation" $(0 < \epsilon < 1)$
 - Starts at t_i & stops at t_e
 - E-folding: $n \equiv \ln[\frac{a(t)}{a(t_i)}]$
- "Reheating"
 - $\epsilon(t)$ oscillates between 0 & 3
 - With increasing frequency
- "Hot Big Bang"
 - $\epsilon(t) = 2$ (Radiation domination)
 - $\epsilon(t) \cong 1.5$ (Matter domination)
 - $\epsilon(t) < 1$ (Late acceleration)

Typical history of $\epsilon(t)$ versus n



Fourier Mode Sum for A(t) using $\mathcal{A}(t,k)$

- Mode function u(t,k)
 - $\ddot{u} + (D-1)H\dot{u} + \frac{k^2}{a^2}u = 0$, $u\dot{u}^* \dot{u}u^* = \frac{i}{a^{D-1}}$
- Amplitude $\mathcal{A}(t,k) \equiv |u(t,k)|^2$ \rightarrow $A(t) = \int \frac{d^{D-1}k}{(2\pi)^{D-1}} \,\mathcal{A}(t,k)$
 - $\ddot{\mathcal{A}} \frac{\dot{\mathcal{A}}^2}{2\mathcal{A}} + (D-1)H\dot{\mathcal{A}} + \frac{2k^2}{a^2}\mathcal{A} \frac{1}{2a^{2D-2}\mathcal{A}} = 0 \text{ with } \mathcal{A}(t,k) \to \frac{1}{2ka^{D-2}} \text{ for UV}$
- $\int \frac{d^D k}{(2\pi)^{D-1}} = \frac{2}{\Gamma(\frac{D-1}{2})(4\pi)^{(D-1)/2}} \int_{k_i}^{\infty} dk \, k^{D-2}$
 - $k_i \equiv a(t_i)H(\bar{t_i})$ initially super-horizon modes not amplified
- During Inflation: $\int_{k_i}^{\infty} dk k^{D-2} \mathcal{A} = \int_{aH}^{\infty} dk \; (UV) + \int_{k_i}^{aH} dk \; (1^{\text{st}} \text{ crossing})$
- After: $\int_{k_i}^{\infty} dk k^{D-2} \mathcal{A} = \int_{k_e}^{\infty} dk \; (UV) + \int_{aH}^{k_e} dk \; (2^{\text{nd}} \; \text{crossing}) \; + \int_{k_i}^{aH} dk \; (1^{\text{st}} \; \text{crossing})$
 - 1st crossing at $t \rightarrow 2^{nd}$ crossing at $t_2(t)$
 - 2nd crossing at $t \rightarrow 1$ st crossing at $t_1(t)$

UV Expansion & 1st Crossing Form

Analytic Forms are nearly perfect & transition is sharp

Yellow = Numerical, Blue = UV expansion, Green = 1st Crossing Form

UV Expansion

•
$$\mathcal{A} \to \frac{1}{2ka^{D-2}} \left\{ 1 + \frac{(D-2)(D-2\epsilon)}{8} \frac{a^2 H^2}{k^2} + O\left(\frac{a^4 H^4}{k^4}\right) \right\}$$

• Form after 1st Crossing $k \equiv a(t_k)H(t_k)$

•
$$\mathcal{A} \to \frac{H^2(t_k)C(\epsilon(t_k))}{2k^3}$$

•
$$C(\epsilon) \equiv \frac{1}{\pi} \Gamma^2 \left(\frac{1}{2} + \frac{1}{1 - \epsilon} \right) \left[2(1 - \epsilon) \right]^{\frac{1}{1 - \epsilon}}$$

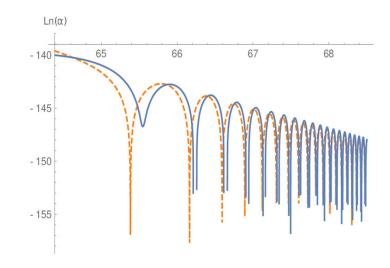
Form after 2nd Crossing

Analytic form

•
$$\mathcal{A} \to \frac{H^2(t_k)C(\epsilon(t_k))}{2k^3} \times \left[\frac{a(t_2(t))}{a(t)}\right]^2 \times \cos^2\left[\int_{t_2(t)}^t dt' \frac{k}{a(t')}\right]$$

- Comparison good except near $t_2(t_k)$
- $\cos^2 \sim \frac{1}{2}$ inside an integral

Blue=Numerical Yellow dashed = Analytic



Use dimensional regularization for the UV

• Recall
$$k^{D-2}\mathcal{A}(\mathsf{t},\mathsf{k}) \cong \frac{k^{D-3}}{2a^{D-2}} + (D-2)(D-2\epsilon)H^2\frac{k^{D-5}}{8a^{D-4}}$$

•
$$\int_{aH}^{\infty} dk k^{D-2} \mathcal{A}(t,k) \cong \left\{ \frac{1}{2(D-2)} \left(\frac{k}{a} \right)^{D-2} + \frac{(D-2)(D-2\epsilon)H^2}{8(D-4)} \left(\frac{k}{a} \right)^{D-4} \right\}_{aH}^{\infty}$$

- $k \to \infty$ vanishes in dimensional regularization
- Only lower limit contributes

$$\bullet \int_{aH}^{\infty} dk k^{D-2} \mathcal{A}(t,k) \cong - \left\{ \frac{1}{2(D-2)} + \frac{(D-2)(D-2\epsilon)}{8(D-4)} \right\} H^{D-2}$$

Renormalized by a conformal counterterm

Take D=4 & convert $\int dk$ to $\int dt$ in finite parts

•
$$k = a(t_k)H(t_k)$$
 $\rightarrow \frac{dk}{k} = (1 - \epsilon)Hdt$

• During inflation
•
$$A(t) \cong -\frac{1}{8} \left(\frac{D-2}{D-4}\right) \frac{(D-2\epsilon)H^{D-2}}{\Gamma\left(\frac{D-1}{2}\right)(4\pi)^{\frac{D-1}{2}}} - \frac{H^2}{8\pi^2} + \frac{1}{4\pi^2} \int_{t_i}^t dt' \ H^3(t') [1 - \epsilon(t')] \ \mathcal{C}\left(\epsilon(t')\right)$$
• 1st term $\equiv A_{\text{div}}(t)$ could be absorbed by conformal counterterm

- 1st term $\equiv A_{\text{div}}(t)$ could be absorbed by conformal counterterm
- After inflation

•
$$A(t) \cong A_{\text{div}} - \frac{(2-\epsilon)H^2}{8\pi^2} \ln\left(\frac{k_e}{aH}\right) - \frac{1}{8\pi^2} \left(\frac{k_e}{a}\right)^2 + \frac{1}{8\pi^2 a^2} \int_{t_e}^{t} dt' \left[\epsilon(t') - 1\right] H(t') a^2(t') \times H^2(t_1(t')) C\left(\epsilon(t_1(t'))\right) + \frac{1}{4\pi^2} \int_{t}^{t_2(t_i)} dt' \left[\epsilon(t') - 1\right] H(t') \times H^2(t_1(t')) C\left(\epsilon(t_1(t'))\right)$$

Conclusions

- Graviton loops on de Sitter give factors of ln(a)
 - We finally have a way of summing these up
 - And propagating them to arbitrarily late times
- Radiation domination \rightarrow $H(t) = \frac{1}{2t} \& a^2H$ is constant
 - A_{fin} dominated by $\frac{1}{4\pi^2}\int_t^{t_2}dt'\,(\epsilon-1)H(t')\times H^2(t_1)\mathcal{C}\big(\epsilon(t_1)\big)\cong \ln(t)\times H^2_{\mathrm{inf}}$
- Large inflationary scales transmitted to late times
 - Generically $\Box A_{\text{fin}} \to H_{\text{inf}}^2 \times H^2(t)$
- Lessons for building nonlocal models of cosmology
 - $\Box A_{\text{fin}}$ is some nonlocal scalar, but not simple
 - Form for general a(t) enough for cosmology, but not gravitational force

