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Inflationary Production of Scalars & Gravitons

ds® = —dt? +a*()di-d¥ > H@t) =~ , e(t)=—-—
* Inflationis H>0 & 0<e<1 de Sitter e =0,H =0, a = et
Inflation produces LOT of infrared scalars & gravitons

> A2 (k) > AR (K)
No(tk) ="28 xem)a?@®) , Ny (tk)=2ED x a?(1)

Interactions of these particles induce large logarithms
Eg L= —%aﬂdlavcbg”"w/—g — %CID4 on de Sitter

* {Q|T,|Q) =p x Iu + (p + Puyu,

« p= 3;2{ 3+ [ln(a) + 0(7\2)} p = + 0(7\2)}

“Leading Logarlthm” at order AV is [In(a)]?" , lower powers are “sub-leading”

i {+3 - # [[ln(a)]2 -+ gln(a)

3212




Large Logs from Loops of Inflationary Gravitons

* Scalar effects are simpler, but graviton effects are generic

* Gravitons can also do things scalars cannot because of spin
* Provides an interaction which does not redshift

* GR + EM (arXiv:1308.3453 & 1408.1448)

Q 2G 2GH?
) q)(t; 7‘) = _47'[a7" {1 ~+ 37 a2r2 + - ln(aH’r) + }
0i > 0i > 2GH?
* FOUt %) = F'(t, ¥) {1 + ——1In(a) + -~

* Pure GR (arXiv:2107.13905 & 2206.11467)

2
.« u(t, k) = ug(t, k) {1 +="=In(a)? + -
2
« Y(t,r) = —%{1 15173522 ol [In(a)® — 31In(a) In(Hr)|+ }

* Perturbation theory breaks down for GH? x In(a)*~1
* Evolve later by summing series of leading logarithms
* Late time effects requires formalism for general a(t) with primordial inflation



Starobinsky’s Stochastic Formalism

Works for scalar potential models

« L= ——6 ®o, dgtV\/[—g V(CID)w/
3r(C)H*
* Recall V(@) = —CD4 > p) = {—3 +—[1n(a) + 0(7\2)} 8n241~(1)

Replace Heisenberg field equation for ® with Langevin equation for ¢
' 0ulv=g 90, ®| = y=g V'(®) > 3H (<p Bo) = =V'(¢)
 “Stochastic jitter” @o(t, x) = k) \/_ ”‘xa(k)+\/_

* Correlators of ¢(t,x) produce the same leading logs as ®(t, X) to ALL ORDEgS
3r(H*

81 21“(4)

Integrate to Yang-Feldman Equation, IR truncate, then differentiate

+ DL, 2) = (6, 2) — [ d*' Y —g(t,F) i6(t — )@ (8, 1), @ (¢, )] V'(@(t, )
o Oy(t,X) = f(;i 3 {u(t eFEa(k) + u'(t, k)e ik xa*(k)}

* Every @, must contribute an IR log to reach leading logarithm =» can IR truncate ®, to ¢,

* Differentiating gives Starobinsky’s Langevin equation!

Derivative interactions prevent some ®,’s from contributing an IR log

e Fundamental interaction of GR is V161G X hdhdh

322

—lk-fa'l'(z)}

* Can also get late time limit when one is approached =2 p(t) =




Applying it to Nonlinear Sigma Models on de Sitter

 Single Field Model (unit S-matrix but interesting background & kinematics)

1 A \2 v
c L=-2(1+350) 0,00,09"y=7
(SS A
= (142 cb) 0,|(1+5 @) y=gg*8,@| = 0
* Integrate out differentiated fields in constant background from interaction
C 0(x) = By D (QUP)P()|Q) = 2

(1+%d>0)2

4 —
Vi = (14 300) 0, By alalotlal] - 2

167% 142,
2

4
off(P) = i1 ‘1 + %CD‘ a scalar potential model! =» use Starobinsky

c (142 cb) 0, |(1+20)y=gg" 0,0 | = —Vig(®)y=g > 3H(p— o) = — (:éjg))z
2

|II

* VEV shows "classical” roll-down accelerated by stochastic jitter

. (Q|D]Q) = {ll—Aszln(a)rM } S n(a)? + 0(2°)




Curvature-Dependent Renormalizations

* Some large logarithms come from the UV
= —In(a) + 0(D — 4)
* Doesn’t happen for scalar potential models whose leading logs are UV finite

* UV logs are captured by the RG
: 1
* Two Field Model: £ = —EGMAO\,Ag“",/ — —(1 + - A) 0,Bd,Bg"’\[—g

+ AL = —~Cp[JB[JBy=7 — 5 Cp;R0, B3, Bg"'\=g

* The Cgq term intrinsically HD, but the Cg, termis 6Z5 = CgyR
2P~ ro-1) meot(RD)  a2uP-+  T(3-1)  [p-2

* tB2 = 4(4m)D/2 ]“( ) D(D 1) 321DP/2 2(D-3)(D-4) (D—l)

_ 0In(1+6Zp) _ A*H 4 N 5
i) = 322 “ 4 o(A*) and B =015

e Callan-Symanzik Equation
Lt B 2| Pt =0 and  Pa(tr) > () + 002)

ZHZ

o 1 aP—4
* (Primitive = —) — (Counterterm =
D—4 D—4

*YB =

s u-r > Py(tr) - %m(m) {1 — 55z In(Hr) + 0(7\4)}



Large Logarithms in Nonlinear Sigma Models
Stochastic and Renormalization Group

Single Field Model

Double Field Model

; 5 : Quantity Leading Logarithms
Quantity Leading Logarithms —
wa(n, k) {1—';;;_:’ In(a) + 0(,\4)} x A
ugp(n, k) {l\—l_[— In(a) -‘v()(X’)} X —’)% up(n, k) {1+0+00)} x A
- Pain.r) || {12 n(a) + 222 () + O } x K in(Hr)
Py(n,r) {l+%f'_’{-ln:u} +()(A“)} X % In(Hr) Py(n,7) {1—-7-- In(Hr +O(A4)} x KH 1n(Hr)
—— _ — (QIA@)|2) {143 In(a) + O } x 3 In(a)
(Qd(x)[€2) —{1—.—\7:!-]-— In(a) +()(A")} X ﬁ%;—lulu} (] A2(2)|Dren {1_%111(”) +O(/\4)} % 2 In(a)
(Q|B(z)|€2) 0

(0(2)[)on

(1208 1) + O(M)  x 2 (o

(QIBQ(I)lﬂ)ren

+ 0(,\4)} X f—i} In(a)




How It Works for Gravity

* Curvature-Dependent Induced Stress Tensor
* Analog of constant scalar is constant h,, = constant g, = n, + khy,
* But g,, = a*g,, with constant g, is de Sitter with H* - —g°°H?!
F,upv = aH (555\(1) + 5\'10519 o gOpgﬂV > Rguv - _gOOHz (5590\1 - 5\')090;1)

* Can use the same relations to integrate out differentiated fields!
3

N 2
* Eg T = 0,000 = 39,09°°0,00:0 — 5 [~G°°H?*] g
* NB a negative contribution to the cosmological constant & arbitrarily large
* Curvature-Dependent Renormalizations
* 1-loop counterterms are C“BV‘SCaﬁy(g & R?

. C“BV‘SCaﬁy(g is fundamentally higher-derivative = irrelevant for large logs

e But R? induces curvature-dependent renormalizations of G & A = (D — 1)H?
R? = [R — DA)? + 2DA[R — (D — 2)A] + D(D — 4)A?




Facilitating the Stochastic Formalism

* Need coincident free propagator & 2 derivatives for cosmology
* A(t) = iA(x;x) , By(t) = 9,iA0x" ) oy, Cuy(t) = 0,00iA(x; x’)x,:?c
e ds? = —dt? + a*(t)dx - dX (primordial inflation) H(t) E% , €(t) = —%

* Single scalar model = Vg (P) = — % OA X In (1 + %(ID)
* Can at least solve numerically provided A(t) is known

* Get everything from A(t)
* B,(t) = 3,A(t)

1 . :
. g“"CHV = EDA & other independent component from conservation



Develop analytic approximations

Assuming primordial inflation

Typically three epochs
* “Inflation” (0 <e<1)
e Starts at t; & stops at t,

* E-folding:n = ln[s((f_))]

* “Reheating”
* €(t) oscillates between 0 & 3
* With increasing frequency

* “Hot Big Bang”
* €(t) = 2 (Radiation domination)
* ¢(t) = 1.5 (Matter domination)
* ¢(t) <1 (Late acceleration)

Typical history of €(t) versus n
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Fourier Mode Sum for A(t) using A(t, k)

* Mode function u(t, k)
°u-|—(D—1)Hu+—u—0 ) un* —uut =

i

aD-1
-1
- Amplitude A(t, k) = [u(t, k)2 > A@®) =] (dn)Df‘l A(t, k)
. A——+(D—1)Hﬂ+£a‘l—2 2D1_204=0WIthcfl(t,k) — for UV
. dPk 2 D-2
f(ZR)D‘l o r(%)(zm)(D—l)/Z fki dk k

* k; = a(t;)H(t;) = initially super-horizon modes not amplified
* During Inflation: fkoo dkkP—2A = foo dk (UV) + faH dk (1 crossing)

* After: | - + 2"% crossing) + 15t crossing
fter: [ dkkP2A = [ dk (UV) + [ dk (2 ) + fe dk (19 )

* 1stcrossing at t =» 2"d crossing at t, (t)
2™ crossing at t =» 15t crossing at t;(t)



UV Expansion & 15t Crossing Form

Analytic Forms are nearly perfect Yellow = Numerical, Blue = UV expansion,
& transition is sharp Green = 15t Crossing Form
d UV EXpanSiOn — Log(A), Horizon crossing at x(n=10)
1 (D-2)(D—2¢) a*H*? a*H* N R TR R
(] - I\
A 2kaP—2 {1 + 8 k? +0 k* ssf\

=13y

15(

* Form after 15t Crossing k = a(t,)H (ty)

2 -20: _ S W— e ——
- ) —

1

c C(e) ==T2 (5+—) [2(1 — )=




Form after 2" Crossing

Analytic form Blue=Numerical
Yellow dashed = Analytic

|, HA0C(e(t) [a(tz(t)) 2 y
a(t)

» Comparison good except near t, (t;)

1, . .
o cosz~5 inside an integral

68



Use dimensional regularization for the UV

D—2 - kD 3 ) kD 5
* Recall k" “Altk) = 5t (D —2)(D — ZE)H —
(o D2 N 1 (k\P7% | (0-2)(0-26)H? (K\P* ”
faH dkk AL k) = {2(1)—2) (a) t 8(D—-4) (a) .
a

e k — oo vanishes in dimensional regularization
* Only lower limit contributes

.« [% dkkP-2A(t k) = —{ L (D‘Z)(D‘Ze)} fP-2

2(D-2) 8(D—4)
* Renormalized by a conformal counterterm




Take D = 4 & convert [ dk to [ dt in finite parts

ck=a(t)H(t) ¥ T =(1-eHdt

. Duringinflatliolr)m N (ozemd 2 1 o
- —z€ / / / /
« A(t) = _5(9—4) —— 1 g Ty, A (D[ = e(t)] C(e(th)
r(=)m) 2

* 1stterm = A,y (t) could be absorbed by conformal counterterm
* After inflation

o A(t) = Ay, — %ln (ﬁ) - (E)z

. aH 8mZ \ a
1 2(ti)
b)) = THE) x B (@)C (e( ()



Conclusions

Graviton loops on de Sitter give factors of In(a)
* We finally have a way of summing these up

* And propagating them to arbitrarily late times

Radiation domination = H(t) = lt & a’H is constant

* Ag, dominated by—f dt' (e — DH(t") X
H?(t,)C(e(ty)) = ln(t) X Hi
Large inflationary scales transmitted to late times
e Generically OAg, = Hp X H2(t)

Lessons for building nonlocal models of cosmology
* OAgp is some nonlocal scalar, but not simple

* Form for general a(t) enough for cosmology, but not
gravitational force

E-Folding Evolution of the Dimensionless Classical Field A

..........................




